989 resultados para Dubosc, Gaston (1861-1941)
Resumo:
Kirje 18.6.1941
Resumo:
The genus Chalcolepidius is revised. Type specimens of 65 nominal species, except C. costatus Pjatakowa, 1941, C. fleutiauxi Pjatakowa, 1941 and C. viriditarsus Schwarz, 1906, are examined. Eighty five species are studied, of which 34 are synonymyzed and 12 new species described; three species, C. alicii Pjatakowa, 1941, C. haroldi Candèze, 1878 and C. unicus Fleutiaux, 1910, formely included in this genus, are not congeneric and are removed; C. validus Candèze, 1857 is revalidated. The genus is now formed by 63 species. Redescriptions, illustrations and a key for the examined species, and a cladistic analysis for groups of species are also included. New synonyms established: C. apacheanus Casey, 1891 = C. simulans Casey, 1907 syn. nov. = C. acuminatus Casey, 1907 syn. nov. = C. nobilis Casey, 1907 syn. nov.; C. approximatus Erichson, 1841 = C. aztecus Casey, 1907 syn. nov. = C. niger Pjatakowa, 1941 syn. nov.; C. attenuatus Erichson, 1841 = C. cuneatus Champion, 1894 syn. nov. = C. tenuis Champion, 1894 syn. nov.; C. aurulentus Candèze, 1874 = C. candezei Dohrn, 1881 syn. nov. = C. grossheimi Pjatakowa, 1941 syn. nov.; C. bomplandii Guérin, 1844 = C. humboldti Candèze, 1881 syn. nov.; C. chalcantheus Candèze, 1857 = C. violaceous Pjatakowa, 1941 syn. nov.; C. cyaneus Candèze, 1881 = C. scitus Candèze, 1889 syn. nov. = C. abbreviatovittatus Pjatakowa, 1941 syn. nov.; C. desmarestii Chevrolat, 1835 = C. brevicollis Casey, 1907 syn. nov.; C. gossipiatus Guérin, 1844 = C. erichsonii Guérin-Méneville, 1844 syn. nov. = C. lemoinii Candèze, 1857 syn. nov.; C. inops Candèze, 1886 = C. murinus Champion, 1894 syn. nov.; C. jansoni Candèze, 1874 = C. mucronatus Candèze, 1889 syn. nov.; C. lacordairii Candèze, 1857 = C. exquisitus Candèze, 1886 syn. nov. = C. monachus Candèze, 1893 syn. nov.; C. lenzi Candèze, 1886 = C. behrensi Candèze, 1886 syn. nov.; C. oxydatus Candèze, 1857 = C. jekeli Candèze, 1874 syn. nov.; C. porcatus (Linnaeus, 1767) = C. peruanus Candèze, 1886 syn. nov. = C. flavostriatus Pjatakowa, 1941 syn. nov. = C. herbstii multistriatus Golbach, 1977 syn. nov.; C. rugatus Candèze, 1857 = C. amictus Casey, 1907 syn. nov.; C. smaragdinus LeConte, 1854 = C. ostentus Casey, 1907 syn. nov. = C. rectus Casey, 1907 syn. nov.; C. sulcatus (Fabricius, 1777) = C. herbstii Erichson, 1841 syn. nov; C. virens (Fabricius, 1787) = C. perrisi Candèze, 1857 syn. nov.; C. virginalis Candèze, 1857 = C. championi Casey, 1907 syn. nov.; C. viridipilis (Say, 1825) = C. debilis Casey, 1907 syn. nov.; C. webbi LeConte, 1854 = C. sonoricus Casey, 1907 syn. nov.; C. zonatus Eschscholtz, 1829 = C. longicollis Candèze, 1857 syn. nov. New species described: C. albisetosus sp. nov. (Ecuador), C. albiventris sp. nov. (Mexico: Veracruz), C. copulatuvittatus sp. nov. (Venezuela), C. extenuatuvittatus sp. nov. (Venezuela), C. fasciatus sp. nov. (Mexico: Durango), C. ferratuvittatus sp. nov. (Ecuador), C. proximus sp. nov. (Mexico: Sinaloa), C. serricornis sp. nov. (Mexico: Veracruz), C. spinipennis sp. nov. (Mexico: Veracruz), C. supremus sp. nov. (Venezuela), C. truncuvittatus sp. nov. (Mexico: Tamaulipas) and C. virgatipennis sp. nov. (Mexico: Durango). Redescribed species: C. angustatus Candèze, 1857, C. apacheanus Casey, 1891, C. approximatus Erichson, 1841, C. attenuatus Erichson, 1841, C. aurulentus Candèze, 1874, C. bomplandii Guérin-Méneville, 1844, C. boucardi Candèze, 1874, C. chalcantheus Candèze, 1857, C. corpulentus Candèze, 1874, C. cyaneus Candèze, 1881, C. desmarestii Chevrolat, 1835, C. dugesi Candèze, 1886, C. erythroloma Candèze, 1857, C. eschscholtzi Chevrolat, 1833, C. exulatus Candèze, 1874, C. fabricii Erichson, 1841, C. forreri Candèze, 1886, C. fryi Candèze, 1874, C. gossipiatus Guérin-Méneville, 1844, C. inops Candèze, 1886, C. jansoni Candèze, 1874, C. lacordairii Candèze, 1857, C. lafargi Chevrolat, 1835, C. lenzi Candèze, 1886, C. limbatus (Fabricius, 1777), C. mexicanus Castelnau, 1836, C. mniszechi Candèze, 1881, C. mocquerysii Candèze, 1857, C. morio Candèze, 1857, C. obscurus Castelnau, 1836, C. oxydatus Candèze, 1857, C. porcatus (Linnaeus, 1767), C. pruinosus Erichson, 1841, C. rodriguezi Candèze, 1886, C. rostainei Candèze, 1889, C. rubripennis LeConte, 1861, C. rugatus Candèze, 1857, C. silbermanni Chevrolat, 1835, C. smaragdinus LeConte, 1854, C. sulcatus (Fabricius, 1777), C. tartarus Fall, 1898, C. validus Candèze, 1857, reval., C. villei Candèze, 1878, C. virens (Fabricius, 1787), C. virginalis Candèze, 1857, C. viridipilis (Say, 1825), C. webbi LeConte, 1854, C. zonatus Eschscholtz, 1829.
Resumo:
Searching and handling time of Chrysoperla externa (Hagen, 1861) (Neuroptera, Chrysopidae) larvae fed on Uroleucon ambrosiae (Thomas, 1878) (Hemiptera, Aphididae). The objective of this research was to determine the searching and handling times of three larval instars of C. externa fed on U. ambrosiae at densities of 30, 40 and 50 per vial, with the feeding of the larvae at the preceding instars being U. ambrosiae nymphs or Sitotroga cerealella (Olivier, 1819) eggs. The larvae were maintained at 25 ± 2 ºC, 70 ± 10% RH and a 14-h photophase. A completely randomized design in a 6 x 3 factorial scheme with 12 replicates was adopted. The shortest searching time was found for the 2nd and 3rd instar larvae of C. externa, and this parameter was variable depending on the feeding given to the larvae previously. The handling time was similar for the 1st, 2nd and 3rd instar larvae. The longest searching time was found at an aphid density of 30, as compared to densities of 40 and 50 prey, with which there were no significant differences. Prey density did not have any influence on handling time.
Resumo:
Feeding potential of Chrysoperla externa (Hagen) (Neuroptera, Chrysopidae) in different densities of Uroleucon ambrosiae (Thomas) (Hemiptera, Aphididae). The feeding potential of 2nd and 3rd instar larvae of Chrysoperla externa (Hagen, 1861) in relation to different densities of 30, 40 and 50 nymphs of Uroleucon ambrosiae (Thomas, 1878) at 3rd and 4th instars was evaluated. The treatments were individualized into 2.5 cm in diameter and 8.5 cm tall flat bottom glass vials and maintained in a controlled environmental chamber at 25±2 ºC temperature, 70±10% RH and 14 h photophase. A completely randomized experimental design with 10 replications was used. The consumption of the prey nymphs by the predator larvae was evaluated after 1, 2, 4, 8, 16 and 24 h from the beginning of the experiment and at every subsequent 24 h period until 2nd instar larvae molted or 3rd instar larvae pupated. Results have shown that for 2nd instar larvae, during the 1 h to 24 h period, there was a decreasing prey consumption at the 30 and 40 prey densities. However an increase in the consumption at the 50 prey density was observed. After this period, C. externa larvae presented a progressive increase on nymphs consumption as a function of the prey density. The same occurred with de 3rd instar predator larvae in all treatments. When daily mean consumption was evaluated the predator/prey ratio was 1:23, 1:27 and 1:33 for 2nd instar larvae and 1:27, 1:33 and 1:41 for 3rd instar larvae at 30, 40 and 50 nymph densities, respectively.
Resumo:
Kirje 1.7.1941
Resumo:
Puhe
Resumo:
This paper has two main objectives. First, it provides a stylised descriptionof the Catalan industrial path of the period 1830-1861. Second, it reviewsthe evolution of the Catalan industry in the Spanish context and, thus, canserve to describe the relative importance of the Catalan industrialexperience. Consequently, it is mainly devoted to computing and analysing thegrowth rates of Catalan industries during the early phase of industrialisation.The results show that Catalonia experienced a true process ofindustrialisation during the period 1830 to 1861, but that its contributionin rapid increase in Spanish GDP was relatively small.
Resumo:
Kirje 27.6.1941
Resumo:
Kirje 24.6.1941