797 resultados para Drugs, magnesium sulphate, pentobarbitone
Resumo:
Heparan sulphate is an important mediator in determining vascular smooth muscle cell (SMC) phenotype. The sulphation pattern of the heparan sulphate chains is critical to their function. We have examined the initial step in the biosynthesis of the sulphated domains mediated by the enzyme heparan sulphate N-deacetylase/N-sulphotransferase (NDST). Rabbit aortic SMC in primary culture exhibited NDST enzyme activity and expressed NDST-1 in their Golgi apparatus, with maximal expression in SMC 2 days after dispersal in primary culture confirmed by Western blot analysis. Endothelial cells, macrophages and fibroblasts expressed NDST-1 but had generally less intense staining than SMC, although SMC expression decreased with culture. The uninjured rat aorta also showed widespread expression of NDST-1. After balloon de-endothelialisation, NDST-1 could not be detected in SMC of the neointima in the early stages of neointimal formation, but was re-expressed at later time points (after 12 weeks). In human coronary arteries, SMC of the media and the diffuse intimal thickening expressed NDST-1, while SMC in the atherosclerotic plaque were negative for NDST-1. We conclude that SMC may regulate their heparan sulphate sulphation at the level of expression of the enzyme heparan sulphate NDST in a manner related to their phenotypic state.
Resumo:
Chemotherapy is central to the control of many parasite infections of both medical and veterinary importance. However, control has been compromised by the emergence of drug resistance in several important parasite species. Such parasites cover a broad phylogenetic range and include protozoa, helminths and arthropods. In order to achieve effective parasite control in the future, the recognition and diagnosis of resistance will be crucial. This demand for early, accurate diagnosis of resistance to specific drugs in different parasite species can potentially be met by modern molecular techniques. This paper summarises the resistance status of a range of important parasites and reviews the available molecular techniques for resistance diagnosis. Opportunities for applying successes in some species to other species where resistance is less well understood are explored. The practical application of molecular techniques and the impact of the technology on improving parasite control are discussed. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The concept of a basic (i.e., essential) medical emergency kit suitable for a general dental practitioner varies somewhat between different authorities. A practitioner's choice is also dependant on the proximity of medical aid and the nature of the dental practice. Over recent years the trend has been to restrict the items to a minimum, in the interest of both common sense and safety, for example, just oxygen, adrenaline 1:1000, an oral carbohydrate source, glyceryl trinitrate and aspirin as first options. Ancillary equipment should include an oxygen therapy facemask, a pocket mask and a set of oral (Guedel) airways. Two further medication options for consideration are an aerosol bronchodilator and, in certain circumstances, an injectable antihypoglycaemic agent. This paper provides a selective overview of the subject. An absolute necessity is for dentists to be competent in Basic Life Support skills, and to maintain a complete and current medical history for all patients.
Resumo:
INTRODUCTION: Population aging in Brazil has increased the prevalence of neurodegenerative diseases (Parkinson's and Alzheimer's disease) and affective disorders (anxiety, depression), all common in old age. A retrospective study was carried out with the purpose of ascertaining if there is an association between falls and psychoactive medication use among older residents of a community in Brazil. METHODS: All residents aged 65+ (n=161) of one neighborhood of Campo Belo, Brazil (population of 48,000) were evaluated regarding the use of psychoactive drugs and the occurrence of falls in the 12 months preceding the study. Vision and hearing screenings were also performed. RESULTS: From the study population, 9.3% were taking prolonged half-life benzodiazepines, 4.4% anticonvulsants (mostly barbiturates), 2.5% antidepressants (all cyclics) and 8.1% alpha-methyldopa. No subject reported use of hypnotics, neuroleptics or drugs to treat Alzheimer's or Parkinson's diseases (except biperiden). As a whole, drugs that increase the risk of falls were used by 1/5 of this population. In the 12-month period preceding the study, 27 residents (16.8%) experienced falls and, of those, 4 (14.8%) had fracture(s). There was an independent association between psychoactive drug use and falls when variables such as age, gender, vision and hearing were controlled (p=0.02). CONCLUSIONS: Although the population of this neighborhood must be considered young (only 4% are 65 years old or more), there are already problems related to the use of psychoactive drugs among people. Prescribed anxiolytics, anticonvulsants, antidepressants and antihypertensives are not appropriate for this age group and their use is associated with falls.
Resumo:
OBJECTIVE: To assess the frequency of combination of antidepressants with other drugs and risk of drug interactions in the setting public hospital units in Brazil. METHODS: Prescriptions of all patients admitted to a public hospital from November 1996 to February 1997 were surveyed from the hospital's data processing center in São Paulo, Brazil. A manual search of case notes of all patients admitted to the psychiatric unit from January 1993 to December 1995 and all patients registered in the affective disorders outpatient clinic in December 1996 was carried out. Patients taking any antidepressant were identified and concomitant use of drugs was checked. By means of a software program (Micromedex®) drug interactions were identified. RESULTS: Out of 6,844 patients admitted to the hospital, 63 (0.9%) used antidepressants and 16 (25.3%) were at risk of drug interaction. Out of 311 patients in the psychiatric unit, 63 (20.2%) used antidepressants and 13 of them (20.6%) were at risk. Out of 87 patients in the affective disorders outpatient clinic, 43 (49.4%) took antidepressants and 7 (16.2%) were at risk. In general, the use of antidepressants was recorded in 169 patients and 36 (21.3%) were at risk of drug interactions. Twenty different forms of combinations at risk of drug interactions were identified: four were classified as mild, 15 moderate and one severe interaction. CONCLUSION: In the hospital general units the number of drug interactions per patient was higher than in the psychiatric unit; and prescription for depression was lower than expected.
Resumo:
Valproic acid (2-propyl pentanoic acid) is a pharmaceutical drug used for treatment of epileptic seizures absence, tonic-clonic (grand mal), complex partial seizures, and mania in bipolar disorder [1]. Valproic acid is a slightly soluble in water and therefore as active pharmaceutical ingredient it is most commonly applied in form of sodium or magnesium valproate salt [1].However the list of adverse effects of these compounds is large and includes among others: tiredness, tremor, sedation and gastrointestinal disturbances [2]. Ionic liquids (ILs) are promising compounds as Active Pharmaceutical Ingredients (APIs)[3]. In this context, the combinations of the valproate anion with appropriate cation when ILs and salts are formed can significantly alter valproate physical, chemical and thermal properties.[4] This methodology can be used for drug modification (alteration of drug solubility in water, lipids, bioavailability, etc)[2] and therefore can eliminate some adverse effect of the drugs related to drug toxicity due for example to its solubility in water and lipids (interaction with intestines). Herein, we will discuss the development of ILs based on valproate anion (Figure 1) prepared according a recent optimized and sustainable acid-base neutralization method [4]. The organic cations such as cetylpyridinium, choline and imidazolium structures were selected based on their biocompatibility and recent applications in pharmacy [3]. All novel API-ILs based on valproate have been studied in terms of their physical, chemical (viscosity, density, solubility) and thermal (calorimetric studies) properties as well as their biological activity.
Resumo:
In recent years Ionic Liquids (ILs) are being applied in life sciences. ILs are being produce with active pharmaceutical drugs (API) as they can reduce polymorphism and drug solubility problems [1] Also ILs are being applied as a drug delivery device in innovative therapies What is appealing in ILs is the ILs building up platform, the counter-ion can be carefully chosen in order to avoid undesirable side effects or to give innovative therapies in which two active ions are paired. This work shows ILs based on ampicillin (an anti-bacterial agent) and ILs based on Amphotericin B. Also we show studies that indicate that ILs based on Ampicillin could reverse resistance in some bacteria. The ILs produced in this work were synthetized by the neutralization method described in Ferraz et. al. [2] Ampicillin anion was combined with the following organic cations 1-ethyl-3-methylimidazolium, [EMIM]; 1-hydroxy-ethyl-3-methylimidazolium, [C2OHMIM]; choline, [cholin]; tetraethylammonium, [TEA]; cetylpyridinium, [C16pyr] and trihexyltetradecylphosphonium, [P6,6,6,14]. Amphotericin B was combined with [C16pyr], [cholin] and 1-metohyethyl-3-methylimidazolium, [C3OMIM]. The ILs-APIs based on ampicillin[2] were tested against sensitive Gram-negative bacteria Escherichia coli ATCC 25922 and Klebsiella pneumonia (clinical isolated), as well as on Gram positive Staphylococcus Aureus ATCC 25923, Staphylococcus epidermidis and Enterococcus faecalis. The arising resistance developed by bacteria to antibiotics is a serious public health threat and needs new and urgent measures. We study the bacterial activity of these compounds against a panel of resistant bacteria (clinical isolated strains): E. coli CTX M9, E. coli TEM CTX M9, E. coli TEM1, E. coli CTX M2, E. coli AmpC Mox2. In this work we demonstrate that is possible to produce ILs from anti-bacterial and anti-fungal compounds. We show here that the new ILs can reverse the bacteria resistance. With the careful choice of the organic cation, it is possible to create important biological and physic-chemical properties. This work also shows that the ion-pair is fundamental in ampicillin mechanism of action.
Resumo:
Despite its rigid structure, bone is a dynamic tissue that is in constant remodeling. This process requires the action of the bone-resorbing osteoclasts and the bone-synthesing osteoblasts. One of the adverse effects attributed to some antihypertensive agents is the ability to alter normal bone metabolism. However, their effective actions on human bone cells remain to be clarified. In this work, the effects of five calcium channel blockers, a class of antihypertensive drugs (AHDs), were investigated on osteoclastic differentiation. Osteoclastic cell cultures were established from precursor cells isolated from human peripheral blood, and were maintained in the absence (control) or in the presence of 10-8-10-4 M of different AHDs (amlodipine, felodipine, diltiazem, lercanidipine and nifedipine). Cell cultures were characterized throughout a 21 day period for tartrate-resistant acid phosphatase (TRAP) activity, number of TRAP+ multinucleated cells, presence of cells with actin rings and expressing vitronectin and calcitonin receptors, and apoptosis rate. Also, the involvement of several signaling pathways on the cellular response was addressed. It was observed that the tested AHDs had the ability to differentially affect osteoclastogenesis. At low doses, amlodipine and felodipine caused an increase on osteoclastic differentiation, while the other drugs inhibited it. At higher doses, all the molecules caused a decrease on the process. The tested AHDs also showed different effects on the analysed signaling pathways. In conclusion, AHDs appeared to have a direct effect on human osteoclast precursor cells, affecting their differentiation. Interestingly, some of them increased while others inhibited the process. Unraveling the mechanisms beneath these observations might help to explain the adverse effects on bone tissue described for this drug class.
Resumo:
Bone is constantly being molded and shaped by the action of osteoclasts and osteoblasts. A proper equilibrium between both cell types metabolic activities is required to ensure an adequate skeletal tissue structure, and it involves resorption of old bone and formation of new bone tissue. It is reported that treatment with antiepileptic drugs (AEDs) can elicit alterations in skeletal structure, in particular in bone mineral density. Nevertheless, the knowledge regarding the effects of AEDs on bone cells are still scarce, particularly on osteoclastic behaviour. In this context, the aim of this study was to investigate the effects of five different AEDs on human osteoclastic cells. Osteoclastic cell cultures were established from precursor cells isolated from human peripheral blood, and were maintained in the absence (control) or in the presence of 10-8-10-4 M of different AEDs (valproate, carbamazepine, gabapentin, lamotrigine and topiramate). Cell cultures were characterized throughout a 21-day period for tartrate-resistant acid phosphatase (TRAP) activity, number of TRAP+ multinucleated cells, presence of cells with actin rings and expressing vitronectin and calcitonin receptors, and apoptosis rate. Also, the involvement of several signaling pathways on the cellular response was addressed. All the tested drugs were able to affect osteoclastic cell development, although with different profiles on their osteoclastogenic modulation properties. Globally, the tendency was to inhibit the process. Furthermore, the signaling pathways involved in the process also seemed to be differentially affected by the AEDs, suggesting that the different drugs may affect osteoclastogenesis through different mechanisms. In conclusion, the present study showed that the different AEDs had the ability to negatively modulate the osteoclastogenesis process, shedding new light towards a better understanding of how these drugs can affect bone tissue.
Resumo:
Objective: This study was conducted to determine the association between magnesium (Mg), body composition and insulin resistance in 136 sedentary postmenopausal women, 50 to 77 years of age. Methods: Diabetics, hypertensives and women on hormonal replacement therapy were excluded and the remaining 74 were divided according to BMI≥25 (obese: OG) and BMI<25 kg/m2 (non-obese: NOG). Nutritional data disclosed that intakes were high for protein and saturated fat, low for carbohydrates, polyunsaturated fat and Mg and normal for the other nutrients, according to recommended dietary allowances (RDA). Mg values in red blood cells (RBC-Mg) and plasma (P-Mg), were determined, as were fasting glucose, and insulin levels, Homeostasis Model Assessment (HOMA), body mass index (BMI), body fat percent (BF %), abdominal fat (AF) and free fat mass (FFM). Results: RBC-Mg values were low in both groups when compared with normal values. There were significant differences in body composition parameters, HOMA and insulin levels, with higher basal insulin levels in OG. RBC-Mg was directly correlated with insulin, HOMA and FFM in both groups, according to Pearson correlations. HOMA in OG was also directly correlated with BMI, FFM and AF. In NOG, HOMA was only correlated with FFM. The low RBC-Mg levels observed were probably due to low Mg intake and to deregulation of factors that control Mg homeostasis during menopause. Conclusions: Both Mg deficit and obesity may independently lead to a higher risk for insulin resistance and cardiovascular disease.
Resumo:
O osso é um tecido metabolicamente ativo e a sua remodelação é importante para regular e manter a massa óssea. Esse processo envolve a reabsorção do material ósseo por ação dos osteoclastos e a síntese de novo material ósseo mediado pelos osteoblastos. Vários estudos têm sugerido que a pressão arterial elevada está associada a alterações no metabolismo do cálcio, o que leva ao aumento da perda de cálcio e da remoção de cálcio do osso. Embora as alterações no metabolismo ósseo sejam um efeito adverso associado a alguns fármacos antihipertensores, o conhecimento em relação a este efeito terapêutico ligado com os bloqueadores de canais de cálcio é ainda muito escasso. Uma vez que os possíveis efeitos no osso podem ser atribuídos à ação antihipertensiva dessas moléculas, ou através de um efeito direto nas atividades metabólicas ósseas, torna-se necessário esclarecer este assunto. Devido ao facto de que as alterações no metabolismo ósseo são um efeito adverso associado a alguns fármacos antihipertensores, o objetivo deste trabalho é avaliar o efeito que os bloqueadores dos canais de cálcio exercem sobre as células ósseas humanas, nomeadamente osteoclastos, osteoblastos e co-culturas de ambos os tipos celulares. Verificou-se que os efeitos dos fármacos antihipertensores variaram consoante o fármaco testado e o sistema de cultura usado. Alguns fármacos revelaram a capacidade de estimular a osteoclastogénese e a osteoblastogénese em concentrações baixas. Independentemente da identidade do fármaco, concentrações elevadas revelaram ser prejudiciais para a resposta das células ósseas. Os mecanismos intracelulares através dos quais os efeitos foram exercidos foram igualmente afetados de forma diferencial pelos diferentes fármacos. Em resumo, este trabalho demonstrou que os bloqueadores dos canais de cálcio utilizados possuem a capacidade de afetar direta- e indiretamente a resposta de células ósseas humanas, cultivadas isoladamente ou co-cultivadas. Este tipo de informação é crucial para compreender e prevenir os potenciais efeitos destes fármacos no tecido ósseo, e também para adequar e eventualmente melhorar a terapêutica antihipertensora de cada paciente.
Resumo:
Several antineoplastic drugs have been classified as carcinogens by the International Agency for Research on Cancer (IARC) on the basis of epidemiological findings, animal carcinogenicity data, and outcomes of in vitro genotoxicity studies. 5-Fluorouracil (5-FU), which is easily absorbed through the skin, is the most frequently used antineoplastic agent in Portuguese hospitals and therefore may be used as an indicator of surface contamination. The aims of the present investigation were to (1) examine surface contamination by 5-FU and (2) assess the genotoxic risk using cytokinesis-block micronucleus assay in nurses from two Portuguese hospitals. The study consisted of 2 groups: 27 nurses occupationally exposed to cytostatic agents (cases) and 111 unexposed individuals (controls). Peripheral blood lymphocytes (PBL) were collected in order to measure micronuclei (MN) in both groups. Hospital B showed a higher numerical level of contamination but not significantly different from Hospital A. However; Hospital A presented the highest value of contamination and also a higher proportion of contaminated samples. The mean frequency of MN was significantly higher in exposed workers compared with controls. No significant differences were found among MN levels between the two hospitals. The analysis of confounding factors showed that age is a significant variable in MN frequency occurrence. Data suggest that there is a potential genotoxic damage related to occupational exposure to cytostatic drugs in oncology nurses.
Resumo:
Despite the classification as known or suspected human carcinogens, by the International Agency for Research on Cancer, the antineoplastic drugs are extensively used in cancer treatment due to their specificity and efficacy. As human carcinogens, these drugs represent a serious threat to the healthcare workers involved in their preparation and administration. This work aims to contribute to better characterize the occupational exposure of healthcare professionals to antineoplastic drugs, by assessing workplace surfaces contamination of pharmacy and administration units of two Portuguese hospitals. Surface contamination was assessed by the determination of cyclophosphamide, 5-fluorouracil, and paclitaxel. These three drugs were used as surrogate markers for surfaces contamination by cytotoxic drugs. Wipe samples were taken and analyzed by HPLCDAD. From the total of 327 analyzed samples, in 121 (37%) was possible to detect and quantify at least one drug. Additionally, 28 samples (8.6 %) indicate contamination by more than one antineoplastic drug, mainly in the administration unit, in both hospitals. Considering the findings in both hospitals, specific measures should be taken, particularly those related with the promotion of good practices and safety procedures and also routine monitoring of surfaces contamination in order to guarantee the appliance of safety measures.