958 resultados para Drill and minor tactics
Resumo:
During Ocean Drilling Program Legs 152 and 163, we recovered core from the offshore East Greenland volcanic province. The basaltic core recovered included a set of structural elements reflecting the history of extrusion, cooling, postdeposition alteration, and minor tectonism. Brittle features in the basaltic core include faults and several generations of veins. Several minicore samples from the lower sections of core from Hole 917A were taken for paleomagnetic analysis, primarily to test whether there were any significant postdepositional tectonic rotations or whether the core could be reoriented using paleomagnetic techniques. The characteristic magnetization direction was used to estimate the in situ orientation of measured structural features within the core. Although significant uncertainty is associated with the analysis, the corrected attitudes of veins in basalt at Site 917 dip moderately west, with a smaller, conjugate group of veins dipping moderately east-southeast, parallel to other seaward-dipping faults in the area, which were interpreted from seismic lines.
Resumo:
Drilling of the distal Newfoundland margin at Ocean Drilling Program Site 1277 recovered part of the transition between exhumed sub-continental mantle lithosphere and normal mid-ocean-ridge basalt (N-MORB) volcanism perhaps related to the initiation of seafloor spreading, which may have occurred near the Aptian/Albian boundary, coincident with the final separation of subcontinental mantle lithosphere. Subcontinental mantle lithosphere was recovered near the crest of a basement high, the Mauzy Ridge. This ridge lies near magnetic Anomaly M1 and is inferred to be of Barremian age. The recovered section is dominated by serpentinized spinel harzburgite, with subordinate dunite and minor gabbroic intrusives, and it includes inferred high-temperature ductile shear zones. The serpentinite is capped by foliated gabbro cataclasite that is interpreted as the product of a major seafloor extensional detachment. The serpentinized harzburgite beneath is highly depleted subcontinental mantle lithosphere that was exhumed to create new seafloor within the ocean-continent transition zone. After inferred removal of overlying brittle crust, the detachment was eroded, producing multiple mass flows that were dominated by clasts of serpentinite and gabbro in a lithoclastic and calcareous matrix. Basaltic lavas were erupted spasmodically, mainly as sheet flows, with subordinate lava breccia, hyaloclastite, and possible pillow lava. The sedimentary-volcanic succession and the exhumed mantle lithosphere experienced later high-angle extensional fracturing and probably faulting. Extensional fissures opened incrementally and were filled with silt-sized carbonate, basalt-derived clastic sediment, and hyaloclastite, forming neptunian dykes and geopetal structures. Chemical analysis of representative basalts for major elements and trace elements were made using a high-precision, high-accuracy X-ray fluorescence method (utilizing increased count times) and by whole-rock inductively coupled plasma-mass spectrometry that yielded additional evidence for rare earth elements. The analyses indicate N-MORB to slightly enriched compositions. The MORB was produced by relatively high degree melting of a fertile mantle source that differed strongly from the cored serpentinized peridotites. The basalts exhibit a distinct negative Nb anomaly on MORB-normalized plots that can be explained by prior extraction of melt from upper mantle that had previously been affected by subduction, possibly during closure of the Iapetus or Rheic oceans. In the proposed interpretation, mantle lithosphere was exhumed to the seafloor and experienced mass wasting to form serpentinite-rich mass flows. The interbedded MORB records the beginning of a transition to "normal" seafloor spreading. This interpretation takes into account drilling results from the Iberia-Galicia margin and the Jurassic Alps-Apennines.
Resumo:
Conglomerates and sandstones in lithologic unit V at DSDP Site 445 comprise lithic clasts, detrital minerals, bioclasts, and authigenic minerals. The lithic clasts are dominantly plagioclase-phyric basalt and microdolerite, followed by plagioclase-clinopyroxene-phyric basalt, aphyric basalt, chert, and limestone. A small amount of hornblende schist occurs. Detrital minerals are dominantly plagioclase, augite, titaniferous augite, olivine, green to pale-brown hornblende, and dark-brown hornblende, with subordinate chromian spinel, epidote, ilmenite, and magnetite, and minor amounts of diopside, enstatite, actinolite, and aegirine-augite. Bioclasts are Nummulites boninensis, Asterocyclina sp. cf. A. penuria, and some other larger foraminifers. Correlation of cored and dredged samples indicates that the Daito Ridge is mainly composed of igneous, metamorphic, ultramafic, and sedimentary rocks. The igneous rocks are mafic (probably tholeiitic) and alkalic. The metamorphic rocks are hornblende schist, tremolite schist, and diopside-chlorite schist. The ultramafic rocks are alpinetype peridotites. Mineralogical data suggest that there were two metamorphic events in the Daito Ridge. The older one was intermediate- to high-pressure metamorphism. The younger one was contact metamorphism caused by a Paleocene volcanic event, possibly related to the beginning of spreading of the west Philippine Basin. The ultramafic rocks suffered from the same contact metamorphism. During the Eocene, exposed volcanic and metamorphic rocks on the uplifted Daito Ridge may have supplied pebble clasts to the surrounding coast and shallow sea bottom. The steep slope offshore may have caused frequent slumping and transportation of the pebble clasts and shallow-water benthic organisms into deeper water, forming the conglomerates and sandstones treated here.
Resumo:
In this data report we present results from stable isotope measurements (d13C and d18O) on bulk sediment at several sites located on a transect along a subduction margin offshore Costa Rica (Ocean Drilling Program Sites 1039, 1040, and 1253). Comparison of stable isotope compositions (d13C and d18O) of the pelagic carbonates Subunit U3C between the reference sites (Site 1039 and 1253) and the underthrust section (Site 1040) reveals similar d13C values and minor differences in d18O values within four specific intervals. Isotope stratigraphy was then used to further constrain the shipboard age models based on bio- and magnetostratigraphy. The resulting age models are in agreement with those derived from biostratigraphy and confirm that the sedimentation rate of the lower Subunit 3C is roughly constant on the order of 50 m/m.y. This is in contrast with the postulated very high sedimentation rates at ~12.7 Ma and lower sedimentation rates (~18 m/m.y.) in the lower part of the section between 16 and 13 Ma, as suggested by shipboard magnetostratigraphic datums.
Resumo:
In the Tyrrhenian Sea (Western Mediterranean), unusual reddish, soft to lithified, dolomitic sediments up to 45 m thick overlie igneous crust at the base of thick Pliocene-Quaternary deep-sea sediment successions in the Marsili (Site 650) and Vavilov (Site 651) basins. These sediments also overlie the Gortani Ridge, a basaltic Seamount near the base of the Sardinian continental margin (Site 655). At both basinal sites (650, 651), the lowest sediments are dolomitic, with manganese oxide (MnO) segregations. Whole-rock X-ray diffraction indicates abundant dolomite and quartz, with subordinate calcite, illite (authigenic), feldspar and minor kaolinite, chlorite, and anhydrite. Chemical analyses show strong enrichment in magnesium oxide (MgO) and MnO relative to shale or deep-sea clay. Mg and Mn correlate positively and exhibit decreasing concentrations up the succession in the Marsili Basin (Site 650). The following scenario is proposed: peridotites were exposed on the seafloor in the Vavilov Basin (Site 651) and then eroded, depositing talc in local fine-grained dolomitic sediments within the igneous basement. After local magmatism ended, the igneous basement at each site subsided rapidly (about 800 m/m.y.) and was blanketed with calcareous and clay-rich oozes. During early diagenesis (from isotopic evidence; McKenzie et al., this volume) tepid fluids, of modified seawater composition, reacted with and dolomitized the overlying deep-sea sediments. At Site 651 additional Mg may have been extracted from asthenosphere peridotite cored at shallow depths (about 100 m). One can hypothesize that fluids rich in Mg and Mn were flushed from the igneous basement, triggered by extensional faulting and local tilting during subsidence of the basement, and that these fluids then dolomitized the base of the overlying sediment succession. Late tectonic movements in the Vavilov Basin (Site 651) fractured already lithified dolomitic sediments and more reducing (? hydrothermal) fluids locally remobilized Fe and Mn and corroded dolomite crystals.
Resumo:
Although the presence of extensive gas hydrate on the Cascadia margin, offshore from the western U.S. and Canada, has been inferred from marine seismic records and pore water chemistry, solid gas hydrate has only been found at one location. At Ocean Drilling Program (ODP) Site 892, offshore from central Oregon, gas hydrate was recovered close to the sediment-water interface at 2-19 m below the seafloor (mbsf) at 670 m water depth. The gas hydrate occurs as elongated platy crystals or crystal aggregates, mostly disseminated irregularly, with higher concentrations occurring in discrete zones, thin layers, and/or veinlets parallel or oblique to the bedding. A 2- to 3-cm thick massive gas hydrate layer, parallel to bedding, was recovered at ~17 mbsf. Gas from a sample of this layer was composed of both CH4 and H2S. This sample is the first mixed-gas hydrate of CH4-H2S documented in ODP; it also contains ethane and minor amounts of CO2. Measured temperatures of the recovered core ranged from 2 to -1.8°C and are 6 to 8 degrees lower than in-situ temperatures. These temperature anomalies were caused by the partial dissociation of the CH4-H2S hydrate during recovery without a pressure core sampler. During this dissociation, toxic levels of H2S (delta34S, +27.4?) were released. The delta13C values of the CH4 in the gas hydrate, -64.5 to -67.5? (PDB), together with deltaD values of -197 to -199? (SMOW) indicate a primarily microbial source for the CH4. The delta18O value of the hydrate H2O is +2.9? (SMOW), comparable with the experimental fractionation factor for sea-ice. The unusual composition (CH4-H2S) and depth distribution (2-19 mbsf) of this gas hydrate indicate mixing between a methane-rich fluid with a pore fluid enriched in sulfide; at this site the former is advecting along an inclined fault into the active sulfate reduction zone. The facts that the CH4-H2S hydrate is primarily confined to the present day active sulfate reduction zone (2-19 mbsf), and that from here down to the BSR depth (19-68 mbsf) the gas hydrate inferred to exist is a >=99% CH4 hydrate, suggest that the mixing of CH4 and H2S is a geologically young process. Because the existence of a mixed CH4-H2S hydrate is indicative of moderate to intense advection of a methane-rich fluid into a near surface active sulfate reduction zone, tectonically active (faulted) margins with organic-rich sediments and moderate to high sedimentation rates are the most likely regions of occurrence. The extension of such a mixed hydrate below the sulfate reduction zone should reflect the time-span of methane advection into the sulfate reduction zone.
Resumo:
Late Cenozoic ash deposits cored in Deep Sea Drilling Project Leg 19 in the far northwest Pacific and in the Bering Sea have altered to bentonite beds. Some bentonite layers were subsequently replaced by carbonate beds. A significant part of the Neogene volcanic history of land areas adjacent to the far north Pacific is represented by these diagenetic deposits. Bentonite beds are composed of authigenic smectite and minor amounts of clinoptilolite. Authigenic smectite has fewer illite layers than detrital smectite. Opal-A and opal-CT, abundant in Bering Sea sediment, are not found in ash or bentonite layers. The percentage of smectite in the total clay-mineral assemblage of ash beds is greater than that for adjacent terrigenous sediment, but the total amount of clay minerals in ash sequences is less than in surrounding deposits. Morphology of the 17-Å peak of smectite found in ash may represent newly formed, poorly crystalline smectite. Smectite becomes better crystallized as bentonite layers form. The percentage of smectite of the total clay-mineral assemblage in bentonite beds is greater than that in surrounding sediment, and, in contrast to ash beds, the total amount of clay minerals (mostly smectite) in bentonite layers is greater than in adjacent terrigenous sediment. Apparently, silica is not mobilized when volcanic ash layers transform to bentonite beds. Saponite-nontronite varieties of smectite and high Fe/Al and Ti/Al ratios distinguish bentonite beds derived from basaltic parent material from those beds formed from more silicic volcanic ash. These silicic ash beds produce bentonite composed mostly of montmorillonite. The basal sediment section at site 192 is rich with bentonite beds. Smectite in the upper part of this section (Eocene) was formed by low-temperature diagenesis of volcanic debris of intermediate or more silicic composition derived from arc or Pacific volcanoes. In contrast, smectite from the lowest 10 to 20 m of the sedimentary section (Cretaceous) is formed from either low-temperature or hydrothermal alteration of the underlying basaltic basement and associated pyroclastic debris. This near-basement smectite contains Mg and K acquired from sea water and Si, Al, Fe, Ti, and Mn released from the volcanic material.
Resumo:
Three types of tephra deposits were recovered on Leg 65 of the Deep Sea Drilling Project (DSDP) from three drill sites at the mouth of the Gulf of California: (1) a series of white ash layers at Sites 483, 484, and 485; (2) a layer of plagioclase- phyric sideromelane shards at Site 483; and (3) an indurated, cross-bedded hyaloclastite in Hole 483B. The ash layers in (1) are composed of colorless, fresh rhyolitic glass shards with minor dacitic and rare basaltic shards. These are thought to be derived from explosive volcanoes on the Mexican mainland. Most of the shards in (2) are fresh, but some show marginal to complete alteration to palagonite. The composition of the glass is that of a MORB-type tholeiite, low in Fe and moderately high in Ti, and possibly erupted from off-axis seamounts. Basaltic glass shards occurring in silt about 45 meters above the basement at Site 484 A in the Tamayo Fracture Zone show a distinctly alkalic composition similar to that of the single basement basalt specimen drilled at this site. The hyaloclastite in (3) is made up chiefly of angular sideromelane shards altered to smectite and zeolites (mainly phillipsite) and minor admixtures of terrigenous silt. A very high K and Ba content indicates significant uptake of at least these elements from seawater. Nevertheless, the unusual chemical composition of the underlying massive basalt flow is believed to be reflected in that of the hyaloclastite. This is a powerful argument for interpreting the massive basalt as a surface flow rather than an intrusion. Glass alteration is different in the glassy margins of flows than in thicker glassy pillow rinds. Also, it appears to proceed faster in coarse- than fine-grained sediments.
Resumo:
Chemical interactions between seawater and the oceanic crust have been widely investigated during recent years. However, most of these studies concern the uppermost volcanic part of the crust. The contribution of the underlying sheeted dike complex to the global budget of the oceans is inferred solely from some ophiolite studies and from the 500-m high-level dike section of DSDP/ODP 504B which was drilled in 1981. Hole 504B is the only place where a continuous and long (1260 m) section in the sheeted dike complex has been cored, and it is now regarded as a reference section for the upper oceanic crust. Many petrological and chemical data from these dolerites are available, including the relative proportions of veins, extensively altered adjacent rocks, and less altered 'host-rocks'. For these three reasons, considering the entire dike section penetrated by Hole 504B is a unique chance to study chemical fluxes related to hydrothermal alteration of this part of the oceanic crust. The calculation of any chemical flux implies knowledge of the chemical composition of the fresh precursor (protolith). Previously, mean compositions of glasses (=P1a) or basalts from the Hole 504B volcanics have been used as protoliths. In this paper, we calculate and discuss the use of various protoliths based on dolerites from Hole 504B. We show that the most adequate and realistic protolith is the mean of individual protoliths that we calculated from the acquisition, by automatic mode, of about 1000 microprobe analyses in each thin-section of dolerite from the Hole 504B lower dikes. Consequently, PFm is further used to calculate chemical fluxes in the dike section of Hole 504B. The chemical compositions of the host-rocks adjacent to alteration halos tend to converge to that of PFm with depth, except for Fe2O3t and TiO2. Because the volume percent of alteration halos increases with depth, the total fluxes related to these halos increase with depth. This explains why the mean flux (host-rocks+halos+veins) of the upper dikes is roughly similar to the mean flux of the lower dikes. During the alteration of the entire Hole 504B dike section, the dolerites gained relatively large quantities of Fe2O3t (+4.0 g/100 cm**3) and released much SiO2 (-6.8 g/100 cm**3), CaO (-5.8 g/100 cm**3), and TiO2 (1.6 g/100 cm**3), and minor Al2O3 (-0.7 g/100 cm**3) and MgO (-0.7 g/100 cm**3). We show the importance of the choice of the protolith in the calculation of chemical budget, particularly for elements showing low flux values. In Hole 504B, the Mg uptake by the volcanics during low temperature alteration added to the Mg release by the dikes gives a net flux of -0.07x10**14 g/year. We propose that part of the Mg uptake by the oceanic crust, which is necessary to compensate the rivers input (-1.33x10**14 g/year), occurs in the underlying gabbros and/or in sections which are altered such as Trinity and Troodos ophiolites. Compared with ophiolites, fluxes calculated for elements other than Mg for the entire crust are generally similar (in tendency, if not in absolute value) to that we obtained from Hole 504B.