851 resultados para Distributed agent system
Resumo:
When designing systems that are complex, dynamic and stochastic in nature, simulation is generally recognised as one of the best design support technologies, and a valuable aid in the strategic and tactical decision making process. A simulation model consists of a set of rules that define how a system changes over time, given its current state. Unlike analytical models, a simulation model is not solved but is run and the changes of system states can be observed at any point in time. This provides an insight into system dynamics rather than just predicting the output of a system based on specific inputs. Simulation is not a decision making tool but a decision support tool, allowing better informed decisions to be made. Due to the complexity of the real world, a simulation model can only be an approximation of the target system. The essence of the art of simulation modelling is abstraction and simplification. Only those characteristics that are important for the study and analysis of the target system should be included in the simulation model. The purpose of simulation is either to better understand the operation of a target system, or to make predictions about a target system’s performance. It can be viewed as an artificial white-room which allows one to gain insight but also to test new theories and practices without disrupting the daily routine of the focal organisation. What you can expect to gain from a simulation study is very well summarised by FIRMA (2000). His idea is that if the theory that has been framed about the target system holds, and if this theory has been adequately translated into a computer model this would allow you to answer some of the following questions: · Which kind of behaviour can be expected under arbitrarily given parameter combinations and initial conditions? · Which kind of behaviour will a given target system display in the future? · Which state will the target system reach in the future? The required accuracy of the simulation model very much depends on the type of question one is trying to answer. In order to be able to respond to the first question the simulation model needs to be an explanatory model. This requires less data accuracy. In comparison, the simulation model required to answer the latter two questions has to be predictive in nature and therefore needs highly accurate input data to achieve credible outputs. These predictions involve showing trends, rather than giving precise and absolute predictions of the target system performance. The numerical results of a simulation experiment on their own are most often not very useful and need to be rigorously analysed with statistical methods. These results then need to be considered in the context of the real system and interpreted in a qualitative way to make meaningful recommendations or compile best practice guidelines. One needs a good working knowledge about the behaviour of the real system to be able to fully exploit the understanding gained from simulation experiments. The goal of this chapter is to brace the newcomer to the topic of what we think is a valuable asset to the toolset of analysts and decision makers. We will give you a summary of information we have gathered from the literature and of the experiences that we have made first hand during the last five years, whilst obtaining a better understanding of this exciting technology. We hope that this will help you to avoid some pitfalls that we have unwittingly encountered. Section 2 is an introduction to the different types of simulation used in Operational Research and Management Science with a clear focus on agent-based simulation. In Section 3 we outline the theoretical background of multi-agent systems and their elements to prepare you for Section 4 where we discuss how to develop a multi-agent simulation model. Section 5 outlines a simple example of a multi-agent system. Section 6 provides a collection of resources for further studies and finally in Section 7 we will conclude the chapter with a short summary.
Resumo:
In this paper, a review on radio-over-fiber (RoF) technology is conducted to support the exploding growth of mobile broadband. An RoF system will provide a platform for distributed antenna system (DAS) as a fronthaul of long term evolution (LTE) technology. A higher splitting ratio from a macrocell is required to support large DAS topology, hence higher optical launch power (OLP) is the right approach. However, high OLP generates undesired nonlinearities, namely the stimulated Brillouin scattering (SBS). Three different aspects of solving the SBS process are covered in this paper, where the solutions ultimately provided an additional 4 dB link budget.
Resumo:
O presente trabalho pretende contribuir para a melhoria da eficiência dos sistemas de transporte e distribuição de água, possível de conseguir através da recuperação de energia potencial que, em certas situações, existe em excesso em condutas gravíticas. Sendo uma questão já abordada em diversos estudos, as poupanças de energia a que poderá conduzir, justificam a análise de todas as oportunidades, em especial no nosso País, cuja dependência energética do exterior é bem conhecida. Todavia, a implementação de soluções que recorrem à instalação de turbinas em condutas de abastecimento de água, causam naturalmente alguma apreensão às respectivas entidades gestoras, uma vez que pode pôr em causa a integridade das condutas e, em consequência, o abastecimento de água. Neste contexto, o estudo de modelos de controlo específicos para os referidos equipamentos poderá ser um contributo para a implementação mais alargada das soluções de melhoria da eficiência de sistemas de abastecimento de água, através da instalação de geradores hidroeléctricos, que terão a dupla função de controlo de caudal e produção de energia. O estudo e simulação dos modelos de controlo contidos neste trabalho permite concluir que é possível garantir a segurança das condutas e produzir energia eléctrica com turbinas nelas instaladas. Interessa assim aprofundar este tipo de estudos de forma a conseguir modelos de controlo que, com as premissas indicadas, possibilitem a optimização da produção de energia.
Resumo:
This paper presents an artificial neural network applied to the forecasting of electricity market prices, with the special feature of being dynamic. The dynamism is verified at two different levels. The first level is characterized as a re-training of the network in every iteration, so that the artificial neural network can able to consider the most recent data at all times, and constantly adapt itself to the most recent happenings. The second level considers the adaptation of the neural network’s execution time depending on the circumstances of its use. The execution time adaptation is performed through the automatic adjustment of the amount of data considered for training the network. This is an advantageous and indispensable feature for this neural network’s integration in ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to the market negotiating players of MASCEM (Multi-Agent Simulator of Competitive Electricity Markets).
Resumo:
Metaheuristics performance is highly dependent of the respective parameters which need to be tuned. Parameter tuning may allow a larger flexibility and robustness but requires a careful initialization. The process of defining which parameters setting should be used is not obvious. The values for parameters depend mainly on the problem, the instance to be solved, the search time available to spend in solving the problem, and the required quality of solution. This paper presents a learning module proposal for an autonomous parameterization of Metaheuristics, integrated on a Multi-Agent System for the resolution of Dynamic Scheduling problems. The proposed learning module is inspired on Autonomic Computing Self-Optimization concept, defining that systems must continuously and proactively improve their performance. For the learning implementation it is used Case-based Reasoning, which uses previous similar data to solve new cases. In the use of Case-based Reasoning it is assumed that similar cases have similar solutions. After a literature review on topics used, both AutoDynAgents system and Self-Optimization module are described. Finally, a computational study is presented where the proposed module is evaluated, obtained results are compared with previous ones, some conclusions are reached, and some future work is referred. It is expected that this proposal can be a great contribution for the self-parameterization of Metaheuristics and for the resolution of scheduling problems on dynamic environments.
Resumo:
The restructuring that the energy sector has suffered in industrialized countries originated a greater complexity in market players’ interactions, and thus new problems and issues to be addressed. Decision support tools that facilitate the study and understanding of these markets become extremely useful to provide players with competitive advantage. In this context arises MASCEM, a multi-agent system for simulating competitive electricity markets. To provide MASCEM with the capacity to recreate the electricity markets reality in the fullest possible extent, it is essential to make it able to simulate as many market models and player types as possible. This paper presents the development of the Complex Market in MASCEM. This module is fundamental to study competitive electricity markets, as it exhibits different characteristics from the already implemented market types.
Resumo:
In order to develop a flexible simulator, a variety of models for Ancillary Services (AS) negotiation has been implemented in MASCEM – a multi-agent system competitive electricity markets simulator. In some of these models, the energy and the AS are addressed simultaneously while in other models they are addressed separately. This paper presents an energy and ancillary services joint market simulation. This paper proposes a deterministic approach for solving the energy and ancillary services joint market. A case study based on the dispatch of Regulation Down, Regulation Up, Spinning Reserve, and Non-Spinning Reserve services is used to demonstrate that the use of the developed methodology is suitable for solving this kind of optimization problem. The presented case study is based on CAISO real AS market data considers fifteen bids.
Resumo:
Agility refers to the manufacturing system ability to rapidly adapt to market and environmental changes in efficient and cost-effective ways. This paper addresses the development of self-organization methods to enhance the operations of a scheduling system, by integrating scheduling system, configuration and optimization into a single autonomic process requiring minimal manual intervention to increase productivity and effectiveness while minimizing complexity for users. We intend to conceptualize real manufacturing systems as interacting autonomous entities in order to build future Decision Support Systems (DSS) for Scheduling in agile manufacturing environments.
Resumo:
This paper addresses the problem of Biological Inspired Optimization Techniques (BIT) parameterization, considering the importance of this issue in the design of BIT especially when considering real world situations, subject to external perturbations. A learning module with the objective to permit a Multi-Agent Scheduling System to automatically select a Meta-heuristic and its parameterization to use in the optimization process is proposed. For the learning process, Casebased Reasoning was used, allowing the system to learn from experience, in the resolution of similar problems. Analyzing the obtained results we conclude about the advantages of its use.
Resumo:
Collaborative Work plays an important role in today’s organizations, especially in areas where decisions must be made. However, any decision that involves a collective or group of decision makers is, by itself complex, but is becoming recurrent in recent years. In this work we present the VirtualECare project, an intelligent multi-agent system able to monitor, interact and serve its customers, which are, normally, in need of care services. In last year’s there has been a substantially increase on the number of people needed of intensive care, especially among the elderly, a phenomenon that is related to population ageing. However, this is becoming not exclusive of the elderly, as diseases like obesity, diabetes and blood pressure have been increasing among young adults. This is a new reality that needs to be dealt by the health sector, particularly by the public one. Given this scenarios, the importance of finding new and cost effective ways for health care delivery are of particular importance, especially when we believe they should not to be removed from their natural “habitat”. Following this line of thinking, the VirtualECare project will be presented, like similar ones that preceded it. Recently we have also assisted to a growing interest in combining the advances in information society - computing, telecommunications and presentation – in order to create Group Decision Support Systems (GDSS). Indeed, the new economy, along with increased competition in today’s complex business environments, takes the companies to seek complementarities in order to increase competitiveness and reduce risks. Under these scenarios, planning takes a major role in a company life. However, effective planning depends on the generation and analysis of ideas (innovative or not) and, as a result, the idea generation and management processes are crucial. Our objective is to apply the above presented GDSS to a new area. We believe that the use of GDSS in the healthcare arena will allow professionals to achieve better results in the analysis of one’s Electronically Clinical Profile (ECP). This achievement is vital, regarding the explosion of knowledge and skills, together with the need to use limited resources and get better results.
Resumo:
Consider the problem of disseminating data from an arbitrary source node to all other nodes in a distributed computer system, like Wireless Sensor Networks (WSNs). We assume that wireless broadcast is used and nodes do not know the topology. We propose new protocols which disseminate data faster and use fewer broadcasts than the simple broadcast protocol.
Resumo:
This paper describes how MPEG-4 object based video (obv) can be used to allow selected objects to be inserted into the play-out stream to a specific user based on a profile derived for that user. The application scenario described here is for personalized product placement, and considers the value of this application in the current and evolving commercial media distribution market given the huge emphasis media distributors are currently placing on targeted advertising. This level of application of video content requires a sophisticated content description and metadata system (e.g., MPEG-7). The scenario considers the requirement for global libraries to provide the objects to be inserted into the streams. The paper then considers the commercial trading of objects between the libraries, video service providers, advertising agencies and other parties involved in the service. Consequently a brokerage of video objects is proposed based on negotiation and trading using intelligent agents representing the various parties. The proposed Media Brokerage Platform is a multi-agent system structured in two layers. In the top layer, there is a collection of coarse grain agents representing the real world players – the providers and deliverers of media contents and the market regulator profiler – and, in the bottom layer, there is a set of finer grain agents constituting the marketplace – the delegate agents and the market agent. For knowledge representation (domain, strategic and negotiation protocols) we propose a Semantic Web approach based on ontologies. The media components contents should be represented in MPEG-7 and the metadata describing the objects to be traded should follow a specific ontology. The top layer content providers and deliverers are modelled by intelligent autonomous agents that express their will to transact – buy or sell – media components by registering at a service registry. The market regulator profiler creates, according to the selected profile, a market agent, which, in turn, checks the service registry for potential trading partners for a given component and invites them for the marketplace. The subsequent negotiation and actual transaction is performed by delegate agents in accordance with their profiles and the predefined rules of the market.
Resumo:
O recurso à monitorização do comportamento dos programas durante a execução é necessário em diversos contextos de aplicação. Por exemplo, para verificar a utilização dos recursos computacionais durante a execução, para calcular métricas que permitam melhor definir o perfil da aplicação ou para melhor identificar em que pontos da execução estão as causas de desvios do comportamento desejado de um programa e, noutros casos, para controlar a configuração da aplicação ou do sistema que suporta a sua execução. Esta técnica tem sido aplicada, quer no caso de programas sequenciais, quer se trate de programas distribuídos. Em particular, no caso de computações paralelas, dada a complexidade devida ao seu não determinismo, estas técnicas têm sido a melhor fonte de informação para compreender a execução da aplicação, quer em termos da sua correcção, quer na avaliação do seu desempenho e utilização dos recursos computacionais. As principais dificuldades no desenvolvimento e na adopção de ferramentas de monitorização, prendem-se com a complexidade dos sistemas de computação paralela e distribuída e com a necessidade de desenvolver soluções específicas para cada plataforma, para cada arquitectura e para cada objectivo. No entanto existem funcionalidades genéricas que, se presentes em todos os casos, podem ajudar ao desenvolvimento de novas ferramentas e à sua adaptação a diferentes ambientes computacionais. Esta dissertação propõe um modelo para suportar a observação e o controlo de aplicações paralelas e distribuídas (DAMS - Distributed ApplicationsMonitoring System). O modelo define uma arquitectura abstracta de monitorização baseada num núcleo mínimo sobre o qual assentam conjuntos de serviços que realizam as funcionalidades pretendidas em cada cenário de utilização. A sua organização em camadas de abstracção e a capacidade de extensão modular, permitem suportar o desenvolvimento de conjuntos de funcionalidades que podem ser partilhadas por distintas ferramentas. Por outro lado, o modelo proposto facilita o desenvolvimento de ferramentas de observação e controlo, sobre diferentes plataformas de suporte à execução. Nesta dissertação, são apresentados exemplos da utilização do modelo e da infraestrutura que o suporta, em diversos cenários de observação e controlo. Descreve-se também a experimentação realizada, com base em protótipos desenvolvidos sobre duas plataformas computacionais distintas.
The utilization bound of non-preemptive rate-monotonic scheduling in controller area networks is 25%
Resumo:
Consider a distributed computer system comprising many computer nodes, each interconnected with a controller area network (CAN) bus. We prove that if priorities to message streams are assigned using rate-monotonic (RM) and if the requested capacity of the CAN bus does not exceed 25% then all deadlines are met.
Resumo:
Consider a distributed computer system such that every computer node can perform a wireless broadcast and when it does so, all other nodes receive this message. The computer nodes take sensor readings but individual sensor readings are not very important. It is important however to compute the aggregated quantities of these sensor readings. We show that a prioritized medium access control (MAC) protocol for wireless broadcast can compute simple aggregated quantities in a single transaction, and more complex quantities with many (but still a small number of) transactions. This leads to significant improvements in the time-complexity and as a consequence also similar reduction in energy “consumption”.