857 resultados para Discrete wavelet packet transform
Resumo:
An alternative way is provided to define the discrete Pascal transform using difference operators to reveal the fundamental concept of the transform, in both one- and two-dimensional cases, which is extended to cover non-square two-dimensional applications. Efficient modularised implementations are proposed.
Digital signal processing and digital system design using discrete cosine transform [student course]
Resumo:
The discrete cosine transform (DCT) is an important functional block for image processing applications. The implementation of a DCT has been viewed as a specialized research task. We apply a micro-architecture based methodology to the hardware implementation of an efficient DCT algorithm in a digital design course. Several circuit optimization and design space exploration techniques at the register-transfer and logic levels are introduced in class for generating the final design. The students not only learn how the algorithm can be implemented, but also receive insights about how other signal processing algorithms can be translated into a hardware implementation. Since signal processing has very broad applications, the study and implementation of an extensively used signal processing algorithm in a digital design course significantly enhances the learning experience in both digital signal processing and digital design areas for the students.
Resumo:
This work is motivated in providing and evaluating a fusion algorithm of remotely sensed images, i.e. the fusion of a high spatial resolution panchromatic image with a multi-spectral image (also known as pansharpening) using the dual-tree complex wavelet transform (DT-CWT), an effective approach for conducting an analytic and oversampled wavelet transform to reduce aliasing, and in turn reduce shift dependence of the wavelet transform. The proposed scheme includes the definition of a model to establish how information will be extracted from the PAN band and how that information will be injected into the MS bands with low spatial resolution. The approach was applied to Spot 5 images where there are bands falling outside PAN’s spectrum. We propose an optional step in the quality evaluation protocol, which is to study the quality of the merger by regions, where each region represents a specific feature of the image. The results show that DT-CWT based approach offers good spatial quality while retaining the spectral information of original images, case SPOT 5. The additional step facilitates the identification of the most affected regions by the fusion process.
Resumo:
Voice biometry is classically based on the parameterization and patterning of speech features mainly. The present approach is based on the characterization of phonation features instead (glottal features). The intention is to reduce intra-speaker variability due to the `text'. Through the study of larynx biomechanics it may be seen that the glottal correlates constitute a family of 2-nd order gaussian wavelets. The methodology relies in the extraction of glottal correlates (the glottal source) which are parameterized using wavelet techniques. Classification and pattern matching was carried out using Gaussian Mixture Models. Data of speakers from a balanced database and NIST SRE HASR2 were used in verification experiments. Preliminary results are given and discussed.
Resumo:
The problem of channel estimation for multicarrier communications is addressed. We focus on systems employing the Discrete Cosine Transform Type-I (DCT1) even at both the transmitter and the receiver, presenting an algorithm which achieves an accurate estimation of symmetric channel filters using only a small number of training symbols. The solution is obtained by using either matrix inversion or compressed sensing algorithms. We provide the theoretical results which guarantee the validity of the proposed technique for the DCT1. Numerical simulations illustrate the good behaviour of the proposed algorithm.
Resumo:
The wavelet transform and Lipschitz exponent perform well in detecting signal singularity.With the bridge crack damage modeled as rotational springs based on fracture mechanics, the deflection time history of the beam under the moving load is determined with a numerical method. The continuous wavelet transformation (CWT) is applied to the deflection of the beam to identify the location of the damage, and the Lipschitz exponent is used to evaluate the damage degree. The influence of different damage degrees,multiple damage, different sensor locations, load velocity and load magnitude are studied.Besides, the feasibility of this method is verified by a model experiment.
Resumo:
Population balances of polymer species in terms 'of discrete transforms with respect to counts of groups lead to tractable first order partial differential equations when ali rate constants are independent of chain length and loop formation is negligible [l]. Average molecular weights in the absence ofgelation are long known to be readily found through integration of an initial value problem. The extension to size distribution prediction is also feasible, but its performance is often lower to the one provided by methods based upon real chain length domain [2]. Moreover, the absence ofagood starting procedure and a higher numerical sensitivity hás decisively impaired its application to non-linear reversibly deactivated polymerizations, namely NMRP [3].
Resumo:
A set of DCT domain properties for shifting and scaling by real amounts, and taking linear operations such as differentiation is described. The DCT coefficients of a sampled signal are subjected to a linear transform, which returns the DCT coefficients of the shifted, scaled and/or differentiated signal. The properties are derived by considering the inverse discrete transform as a cosine series expansion of the original continuous signal, assuming sampling in accordance with the Nyquist criterion. This approach can be applied in the signal domain, to give, for example, DCT based interpolation or derivatives. The same approach can be taken in decoding from the DCT to give, for example, derivatives in the signal domain. The techniques may prove useful in compressed domain processing applications, and are interesting because they allow operations from the continuous domain such as differentiation to be implemented in the discrete domain. An image matching algorithm illustrates the use of the properties, with improvements in computation time and matching quality.
Resumo:
This paper presents a forecasting technique for forward energy prices, one day ahead. This technique combines a wavelet transform and forecasting models such as multi- layer perceptron, linear regression or GARCH. These techniques are applied to real data from the UK gas markets to evaluate their performance. The results show that the forecasting accuracy is improved significantly by using the wavelet transform. The methodology can be also applied to forecasting market clearing prices and electricity/gas loads.
Resumo:
This Letter addresses image segmentation via a generative model approach. A Bayesian network (BNT) in the space of dyadic wavelet transform coefficients is introduced to model texture images. The model is similar to a Hidden Markov model (HMM), but with non-stationary transitive conditional probability distributions. It is composed of discrete hidden variables and observable Gaussian outputs for wavelet coefficients. In particular, the Gabor wavelet transform is considered. The introduced model is compared with the simplest joint Gaussian probabilistic model for Gabor wavelet coefficients for several textures from the Brodatz album [1]. The comparison is based on cross-validation and includes probabilistic model ensembles instead of single models. In addition, the robustness of the models to cope with additive Gaussian noise is investigated. We further study the feasibility of the introduced generative model for image segmentation in the novelty detection framework [2]. Two examples are considered: (i) sea surface pollution detection from intensity images and (ii) image segmentation of the still images with varying illumination across the scene.
Resumo:
ACM Computing Classification System (1998): I.7, I.7.5.
Resumo:
Peer reviewed
Resumo:
info:eu-repo/semantics/inPress