992 resultados para Discrete valued features


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cascading appearance-based (CAB) feature extraction technique has established itself as the state-of-the-art in extracting dynamic visual speech features for speech recognition. In this paper, we will focus on investigating the effectiveness of this technique for the related speaker verification application. By investigating the speaker verification ability of each stage of the cascade we will demonstrate that the same steps taken to reduce static speaker and environmental information for the visual speech recognition application also provide similar improvements for visual speaker recognition. A further study is conducted comparing synchronous HMM (SHMM) based fusion of CAB visual features and traditional perceptual linear predictive (PLP) acoustic features to show that higher complexity inherit in the SHMM approach does not appear to provide any improvement in the final audio-visual speaker verification system over simpler utterance level score fusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Now in its second edition, this book describes tools that are commonly used in transportation data analysis. The first part of the text provides statistical fundamentals while the second part presents continuous dependent variable models. With a focus on count and discrete dependent variable models, the third part features new chapters on mixed logit models, logistic regression, and ordered probability models. The last section provides additional coverage of Bayesian statistical modeling, including Bayesian inference and Markov chain Monte Carlo methods. Data sets are available online to use with the modeling techniques discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This correspondence paper addresses the problem of output feedback stabilization of control systems in networked environments with quality-of-service (QoS) constraints. The problem is investigated in discrete-time state space using Lyapunov’s stability theory and the linear inequality matrix technique. A new discrete-time modeling approach is developed to describe a networked control system (NCS) with parameter uncertainties and nonideal network QoS. It integrates a network-induced delay, packet dropout, and other network behaviors into a unified framework. With this modeling, an improved stability condition, which is dependent on the lower and upper bounds of the equivalent network-induced delay, is established for the NCS with norm-bounded parameter uncertainties. It is further extended for the output feedback stabilization of the NCS with nonideal QoS. Numerical examples are given to demonstrate the main results of the theoretical development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of appropriate features to characterize an output class or object is critical for all classification problems. This paper evaluates the capability of several spectral and texture features for object-based vegetation classification at the species level using airborne high resolution multispectral imagery. Image-objects as the basic classification unit were generated through image segmentation. Statistical moments extracted from original spectral bands and vegetation index image are used as feature descriptors for image objects (i.e. tree crowns). Several state-of-art texture descriptors such as Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Patterns (LBP) and its extensions are also extracted for comparison purpose. Support Vector Machine (SVM) is employed for classification in the object-feature space. The experimental results showed that incorporating spectral vegetation indices can improve the classification accuracy and obtained better results than in original spectral bands, and using moments of Ratio Vegetation Index obtained the highest average classification accuracy in our experiment. The experiments also indicate that the spectral moment features also outperform or can at least compare with the state-of-art texture descriptors in terms of classification accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In computational linguistics, information retrieval and applied cognition, words and concepts are often represented as vectors in high dimensional spaces computed from a corpus of text. These high dimensional spaces are often referred to as Semantic Spaces. We describe a novel and efficient approach to computing these semantic spaces via the use of complex valued vector representations. We report on the practical implementation of the proposed method and some associated experiments. We also briefly discuss how the proposed system relates to previous theoretical work in Information Retrieval and Quantum Mechanics and how the notions of probability, logic and geometry are integrated within a single Hilbert space representation. In this sense the proposed system has more general application and gives rise to a variety of opportunities for future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Path planning and trajectory design for autonomous underwater vehicles (AUVs) is of great importance to the oceanographic research community because automated data collection is becoming more prevalent. Intelligent planning is required to maneuver a vehicle to high-valued locations to perform data collection. In this paper, we present algorithms that determine paths for AUVs to track evolving features of interest in the ocean by considering the output of predictive ocean models. While traversing the computed path, the vehicle provides near-real-time, in situ measurements back to the model, with the intent to increase the skill of future predictions in the local region. The results presented here extend prelim- inary developments of the path planning portion of an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. This extension is the incorporation of multiple vehicles to track the centroid and the boundary of the extent of a feature of interest. Similar algorithms to those presented here are under development to consider additional locations for multiple types of features. The primary focus here is on algorithm development utilizing model predictions to assist in solving the motion planning problem of steering an AUV to high-valued locations, with respect to the data desired. We discuss the design technique to generate the paths, present simulation results and provide experimental data from field deployments for tracking dynamic features by use of an AUV in the Southern California coastal ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The question posed in this chapter is: To what extent does current education theory and practice prepare graduates for the creative economy? We first define what we mean by the term creative economy, explain why we think it is a significant point of focus, derive its key features, describe the human capital requirements of these features, and then discuss whether current education theory and practice are producing these human capital requirements. The term creative economy can be critiqued as a shibboleth, but as a high level metaphor, it nevertheless has value in directing us away from certain sorts of economic activity and toward other kinds. Much economic activity is in no way creative. If I have a monopoly on some valued resource, I do not need to be creative. Other forms of economic activity are intensely creative. If I have no valued resources, I must create something that is valued. At its simplest and yet most profound, the idea of a creative economy suggests a capacity to compete based on engaging in a gainful activity that is different from everyone else’s, rather than pursuing the same endeavor more competitively than everyone else. The ability to differentiate on novelty is key to the concept of creative economy and key to our analysis of education for this economy. Therefore, we follow Potts and Cunningham (2008, p. 18) and Potts, Cunningham, Hartley, and Ormerod (2008) in their discussion of the economic significance of the creative industries and see the creative economy not as a sector but as a set of economic processes that act on the economy as a whole to invigorate innovation based growth. We see the creative economy as suffused with all industry rather than as a sector in its own right. These economic processes are essentially concerned with the production of new ideas that ultimately become new products, service, industry sectors, or, in some cases, process or product innovations in older sectors. Therefore, our starting point is that modern economies depend on innovation, and we see the core of innovation as new knowledge of some kind. We commence with some observations about innovation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a method of voice activity detection (VAD) for high noise scenarios, using a noise robust voiced speech detection feature. The developed method is based on the fusion of two systems. The first system utilises the maximum peak of the normalised time-domain autocorrelation function (MaxPeak). The second zone system uses a novel combination of cross-correlation and zero-crossing rate of the normalised autocorrelation to approximate a measure of signal pitch and periodicity (CrossCorr) that is hypothesised to be noise robust. The score outputs by the two systems are then merged using weighted sum fusion to create the proposed autocorrelation zero-crossing rate (AZR) VAD. Accuracy of AZR was compared to state of the art and standardised VAD methods and was shown to outperform the best performing system with an average relative improvement of 24.8% in half-total error rate (HTER) on the QUT-NOISE-TIMIT database created using real recordings from high-noise environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paired speaking tests are now commonly used in both high-stakes testing and classroom assessment contexts. The co-construction of discourse by candidates is regarded as a strength of paired speaking tests, as candidates have the opportunity to display a wider range of interactional competencies, including turn taking, initiating topics and engaging in extended discourse with a partner, rather than an examiner. However, the impact of the interlocutor in such jointly negotiated discourse and the implications for assessing interactional competence are areas of concern. This article reports on the features of interactional competence that were salient to four trained raters of 12 paired speaking tests through the analysis of rater notes, stimulated verbal recalls and rater discussions. Findings enabled the identification of features of the performance noted by raters when awarding scores for interactional competence, and the particular features associated with higher and lower scores. A number of these features were seen by the raters as mutual achievements, which raises the issue of the extent to which it is possible to assess individual contributions to the co-constructed performance. The findings have implications for defining the construct of interactional competence in paired speaking tests and operationalising this in rating scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the impact of individual-specific information processing strategies (IPSs) on the inclusion/exclusion of attributes on the parameter estimates and behavioural outputs of models of discrete choice. Current practice assumes that individuals employ a homogenous IPS with regards to how they process attributes of stated choice (SC) experiments. We show how information collected exogenous of the SC experiment on whether respondents either ignored or considered each attribute may be used in the estimation process, and how such information provides outputs that are IPS segment specific. We contend that accounting the inclusion/exclusion of attributes will result in behaviourally richer population parameter estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facial expression is an important channel for human communication and can be applied in many real applications. One critical step for facial expression recognition (FER) is to accurately extract emotional features. Current approaches on FER in static images have not fully considered and utilized the features of facial element and muscle movements, which represent static and dynamic, as well as geometric and appearance characteristics of facial expressions. This paper proposes an approach to solve this limitation using ‘salient’ distance features, which are obtained by extracting patch-based 3D Gabor features, selecting the ‘salient’ patches, and performing patch matching operations. The experimental results demonstrate high correct recognition rate (CRR), significant performance improvements due to the consideration of facial element and muscle movements, promising results under face registration errors, and fast processing time. The comparison with the state-of-the-art performance confirms that the proposed approach achieves the highest CRR on the JAFFE database and is among the top performers on the Cohn-Kanade (CK) database.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human facial expression is a complex process characterized of dynamic, subtle and regional emotional features. State-of-the-art approaches on facial expression recognition (FER) have not fully utilized this kind of features to improve the recognition performance. This paper proposes an approach to overcome this limitation using patch-based ‘salient’ Gabor features. A set of 3D patches are extracted to represent the subtle and regional features, and then inputted into patch matching operations for capturing the dynamic features. Experimental results show a significant performance improvement of the proposed approach due to the use of the dynamic features. Performance comparison with pervious work also confirms that the proposed approach achieves the highest CRR reported to date on the JAFFE database and a top-level performance on the Cohn-Kanade (CK) database.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robust, affine covariant, feature extractors provide a means to extract correspondences between images captured by widely separated cameras. Advances in wide baseline correspondence extraction require looking beyond the robust feature extraction and matching approach. This study examines new techniques of extracting correspondences that take advantage of information contained in affine feature matches. Methods of improving the accuracy of a set of putative matches, eliminating incorrect matches and extracting large numbers of additional correspondences are explored. It is assumed that knowledge of the camera geometry is not available and not immediately recoverable. The new techniques are evaluated by means of an epipolar geometry estimation task. It is shown that these methods enable the computation of camera geometry in many cases where existing feature extractors cannot produce sufficient numbers of accurate correspondences.