960 resultados para Discrete Data Models
Resumo:
The politics of intergovernmental transfers in Brazil. This article examines the political economy of public resources distribution in Brazil's federal system in 1985-2004. We propose an empirical exercise to analyze how the country's federal governments deal with the tradeoff between the provision of material wellbeing to sub-national governments (the states in our study) and the pursuit of political support from the latter. To identify the determinants of the transfer of resources from the federal government to the states, a set of economic, political, and institutional variables is econometrically tested. Based upon instrumental variables estimation for panel-data models, our estimates indicate that in Brazil the pursuit of political goals prevails over social equity and economic efficiency criteria: higher levels of per capita transfers are associated with the political makeup of governing coalitions, while larger investments in infrastructure and development by the states are associated with a lower amount of per capita resources transferred to sub-national governments. Our findings also suggest a trend toward the freezing of interregional inequalities in Brazil, and show the relevance of fiscal discipline laws in discouraging the use of the administrative apparatus for electioneering.
Resumo:
Le problème de tarification qui nous intéresse ici consiste à maximiser le revenu généré par les usagers d'un réseau de transport. Pour se rendre à leurs destinations, les usagers font un choix de route et utilisent des arcs sur lesquels nous imposons des tarifs. Chaque route est caractérisée (aux yeux de l'usager) par sa "désutilité", une mesure de longueur généralisée tenant compte à la fois des tarifs et des autres coûts associés à son utilisation. Ce problème a surtout été abordé sous une modélisation déterministe de la demande selon laquelle seules des routes de désutilité minimale se voient attribuer une mesure positive de flot. Le modèle déterministe se prête bien à une résolution globale, mais pèche par manque de réalisme. Nous considérons ici une extension probabiliste de ce modèle, selon laquelle les usagers d'un réseau sont alloués aux routes d'après un modèle de choix discret logit. Bien que le problème de tarification qui en résulte est non linéaire et non convexe, il conserve néanmoins une forte composante combinatoire que nous exploitons à des fins algorithmiques. Notre contribution se répartit en trois articles. Dans le premier, nous abordons le problème d'un point de vue théorique pour le cas avec une paire origine-destination. Nous développons une analyse de premier ordre qui exploite les propriétés analytiques de l'affectation logit et démontrons la validité de règles de simplification de la topologie du réseau qui permettent de réduire la dimension du problème sans en modifier la solution. Nous établissons ensuite l'unimodalité du problème pour une vaste gamme de topologies et nous généralisons certains de nos résultats au problème de la tarification d'une ligne de produits. Dans le deuxième article, nous abordons le problème d'un point de vue numérique pour le cas avec plusieurs paires origine-destination. Nous développons des algorithmes qui exploitent l'information locale et la parenté des formulations probabilistes et déterministes. Un des résultats de notre analyse est l'obtention de bornes sur l'erreur commise par les modèles combinatoires dans l'approximation du revenu logit. Nos essais numériques montrent qu'une approximation combinatoire rudimentaire permet souvent d'identifier des solutions quasi-optimales. Dans le troisième article, nous considérons l'extension du problème à une demande hétérogène. L'affectation de la demande y est donnée par un modèle de choix discret logit mixte où la sensibilité au prix d'un usager est aléatoire. Sous cette modélisation, l'expression du revenu n'est pas analytique et ne peut être évaluée de façon exacte. Cependant, nous démontrons que l'utilisation d'approximations non linéaires et combinatoires permet d'identifier des solutions quasi-optimales. Finalement, nous en profitons pour illustrer la richesse du modèle, par le biais d'une interprétation économique, et examinons plus particulièrement la contribution au revenu des différents groupes d'usagers.
Resumo:
Parmi les méthodes d’estimation de paramètres de loi de probabilité en statistique, le maximum de vraisemblance est une des techniques les plus populaires, comme, sous des conditions l´egères, les estimateurs ainsi produits sont consistants et asymptotiquement efficaces. Les problèmes de maximum de vraisemblance peuvent être traités comme des problèmes de programmation non linéaires, éventuellement non convexe, pour lesquels deux grandes classes de méthodes de résolution sont les techniques de région de confiance et les méthodes de recherche linéaire. En outre, il est possible d’exploiter la structure de ces problèmes pour tenter d’accélerer la convergence de ces méthodes, sous certaines hypothèses. Dans ce travail, nous revisitons certaines approches classiques ou récemment d´eveloppées en optimisation non linéaire, dans le contexte particulier de l’estimation de maximum de vraisemblance. Nous développons également de nouveaux algorithmes pour résoudre ce problème, reconsidérant différentes techniques d’approximation de hessiens, et proposons de nouvelles méthodes de calcul de pas, en particulier dans le cadre des algorithmes de recherche linéaire. Il s’agit notamment d’algorithmes nous permettant de changer d’approximation de hessien et d’adapter la longueur du pas dans une direction de recherche fixée. Finalement, nous évaluons l’efficacité numérique des méthodes proposées dans le cadre de l’estimation de modèles de choix discrets, en particulier les modèles logit mélangés.
Resumo:
Ma thèse est composée de trois essais sur l'inférence par le bootstrap à la fois dans les modèles de données de panel et les modèles à grands nombres de variables instrumentales #VI# dont un grand nombre peut être faible. La théorie asymptotique n'étant pas toujours une bonne approximation de la distribution d'échantillonnage des estimateurs et statistiques de tests, je considère le bootstrap comme une alternative. Ces essais tentent d'étudier la validité asymptotique des procédures bootstrap existantes et quand invalides, proposent de nouvelles méthodes bootstrap valides. Le premier chapitre #co-écrit avec Sílvia Gonçalves# étudie la validité du bootstrap pour l'inférence dans un modèle de panel de données linéaire, dynamique et stationnaire à effets fixes. Nous considérons trois méthodes bootstrap: le recursive-design bootstrap, le fixed-design bootstrap et le pairs bootstrap. Ces méthodes sont des généralisations naturelles au contexte des panels des méthodes bootstrap considérées par Gonçalves et Kilian #2004# dans les modèles autorégressifs en séries temporelles. Nous montrons que l'estimateur MCO obtenu par le recursive-design bootstrap contient un terme intégré qui imite le biais de l'estimateur original. Ceci est en contraste avec le fixed-design bootstrap et le pairs bootstrap dont les distributions sont incorrectement centrées à zéro. Cependant, le recursive-design bootstrap et le pairs bootstrap sont asymptotiquement valides quand ils sont appliqués à l'estimateur corrigé du biais, contrairement au fixed-design bootstrap. Dans les simulations, le recursive-design bootstrap est la méthode qui produit les meilleurs résultats. Le deuxième chapitre étend les résultats du pairs bootstrap aux modèles de panel non linéaires dynamiques avec des effets fixes. Ces modèles sont souvent estimés par l'estimateur du maximum de vraisemblance #EMV# qui souffre également d'un biais. Récemment, Dhaene et Johmans #2014# ont proposé la méthode d'estimation split-jackknife. Bien que ces estimateurs ont des approximations asymptotiques normales centrées sur le vrai paramètre, de sérieuses distorsions demeurent à échantillons finis. Dhaene et Johmans #2014# ont proposé le pairs bootstrap comme alternative dans ce contexte sans aucune justification théorique. Pour combler cette lacune, je montre que cette méthode est asymptotiquement valide lorsqu'elle est utilisée pour estimer la distribution de l'estimateur split-jackknife bien qu'incapable d'estimer la distribution de l'EMV. Des simulations Monte Carlo montrent que les intervalles de confiance bootstrap basés sur l'estimateur split-jackknife aident grandement à réduire les distorsions liées à l'approximation normale en échantillons finis. En outre, j'applique cette méthode bootstrap à un modèle de participation des femmes au marché du travail pour construire des intervalles de confiance valides. Dans le dernier chapitre #co-écrit avec Wenjie Wang#, nous étudions la validité asymptotique des procédures bootstrap pour les modèles à grands nombres de variables instrumentales #VI# dont un grand nombre peu être faible. Nous montrons analytiquement qu'un bootstrap standard basé sur les résidus et le bootstrap restreint et efficace #RE# de Davidson et MacKinnon #2008, 2010, 2014# ne peuvent pas estimer la distribution limite de l'estimateur du maximum de vraisemblance à information limitée #EMVIL#. La raison principale est qu'ils ne parviennent pas à bien imiter le paramètre qui caractérise l'intensité de l'identification dans l'échantillon. Par conséquent, nous proposons une méthode bootstrap modifiée qui estime de facon convergente cette distribution limite. Nos simulations montrent que la méthode bootstrap modifiée réduit considérablement les distorsions des tests asymptotiques de type Wald #$t$# dans les échantillons finis, en particulier lorsque le degré d'endogénéité est élevé.
Resumo:
We derive a new representation for a function as a linear combination of local correlation kernels at optimal sparse locations and discuss its relation to PCA, regularization, sparsity principles and Support Vector Machines. We first review previous results for the approximation of a function from discrete data (Girosi, 1998) in the context of Vapnik"s feature space and dual representation (Vapnik, 1995). We apply them to show 1) that a standard regularization functional with a stabilizer defined in terms of the correlation function induces a regression function in the span of the feature space of classical Principal Components and 2) that there exist a dual representations of the regression function in terms of a regularization network with a kernel equal to a generalized correlation function. We then describe the main observation of the paper: the dual representation in terms of the correlation function can be sparsified using the Support Vector Machines (Vapnik, 1982) technique and this operation is equivalent to sparsify a large dictionary of basis functions adapted to the task, using a variation of Basis Pursuit De-Noising (Chen, Donoho and Saunders, 1995; see also related work by Donahue and Geiger, 1994; Olshausen and Field, 1995; Lewicki and Sejnowski, 1998). In addition to extending the close relations between regularization, Support Vector Machines and sparsity, our work also illuminates and formalizes the LFA concept of Penev and Atick (1996). We discuss the relation between our results, which are about regression, and the different problem of pattern classification.
Resumo:
Nowadays, Oceanographic and Geospatial communities are closely related worlds. The problem is that they follow parallel paths in data storage, distributions, modelling and data analyzing. This situation produces different data model implementations for the same features. While Geospatial information systems have 2 or 3 dimensions, the Oceanographic models uses multidimensional parameters like temperature, salinity, streams, ocean colour... This implies significant differences between data models of both communities, and leads to difficulties in dataset analysis for both sciences. These troubles affect directly to the Mediterranean Institute for Advanced Studies ( IMEDEA (CSIC-UIB)). Researchers from this Institute perform intensive processing with data from oceanographic facilities like CTDs, moorings, gliders… and geospatial data collected related to the integrated management of coastal zones. In this paper, we present an approach solution based on THREDDS (Thematic Real-time Environmental Distributed Data Services). THREDDS allows data access through the standard geospatial data protocol Web Coverage Service, inside the European project (European Coastal Sea Operational Observing and Forecasting system). The goal of ECOOP is to consolidate, integrate and further develop existing European coastal and regional seas operational observing and forecasting systems into an integrated pan- European system targeted at detecting environmental and climate changes
Resumo:
El aseguramiento de portafolio trae consigo unos costos de transacción asociados que son reconocidos por la teoría financiera pero que no han sido objeto de estudio de muchas aproximaciones empíricas. Mediante modelos econométricos de series de tiempo se puede pronosticar el número de rebalanceos necesarios para mantener un portafolio asegurado, así como el tiempo que debe transcurrir entre cada uno de estos. Para tal fin se usan modelos de Datos de Cuenta de Poisson Autorregresivos (ACP) modificados para captar las características de la serie y modelos de Duración Autorregresivos (ACD). Los modelos capturan la autocorrelación de las series y pronostican adecuadamente el costo de transacción asociado a los rebalanceos.
Resumo:
Este documento examina la hipótesis de sostenibilidad fiscal para 8 países de Latinoamérica. A partir de un modelo de datos panel, se determina si los ingresos y gasto primario de los Gobiernos entre 1960 - 2009 están cointegrados, es decir, si son sostenibles a largo plazo. Para esto, se utilizaron pruebas de raíz unitaria y cointegración de segunda generación con datos panel macroeconómicos, lo que permite tener en cuenta la dependencia cruzada entre los países, así como los posibles quiebres estructurales en la relación que estén determinados de manera endógena; en particular, se usan la prueba de estacionariedad de Hadri y Rao (2008) y la prueba de cointegración de Westerlund (2006). Como resultado del análisis se encontró evidencia empírica de que en el período bajo estudio el déficit primario en los 8 países latinoamericanos es sostenible pero en sentido débil.
Resumo:
La crisis que se desató en el mercado hipotecario en Estados Unidos en 2008 y que logró propagarse a lo largo de todo sistema financiero, dejó en evidencia el nivel de interconexión que actualmente existe entre las entidades del sector y sus relaciones con el sector productivo, dejando en evidencia la necesidad de identificar y caracterizar el riesgo sistémico inherente al sistema, para que de esta forma las entidades reguladoras busquen una estabilidad tanto individual, como del sistema en general. El presente documento muestra, a través de un modelo que combina el poder informativo de las redes y su adecuación a un modelo espacial auto regresivo (tipo panel), la importancia de incorporar al enfoque micro-prudencial (propuesto en Basilea II), una variable que capture el efecto de estar conectado con otras entidades, realizando así un análisis macro-prudencial (propuesto en Basilea III).
Resumo:
La decisión de los individuos acerca del ahorro para el retiro ha sido abordada teóricamente bajo la hipótesis de que el sistema de seguridad social se comporta como un sustituto de otros mecanismos de ahorro. Este documento presenta evidencia de los patrones y determinantes del ahorro para el retiro en Colombia a partir de la Gran Encuesta Integrada de Hogares de 2007. Los resultados muestran que el 63% de los ocupados declaran no ahorrar para su vejez. A partir de modelos de selección discreta se encuentra que individuos jóvenes, de sexo masculino, con menor nivel educativo, residentes en zonas rurales, y trabajadores cuenta propia, presentan menores probabilidades de ah orrar para el retiro; además las características socioeconómicas resultan significativas en la determinación del mecanismo de ahorro utilizado.
Resumo:
El artículo analiza los determinantes de la presencia de hijos no deseados en Colombia. Se utiliza la información de la Encuesta Nacional de Demografía y Salud (ENDS, 2005), específicamente para las mujeres de 40 años o más. Dadas las características especiales de la variable que se analiza, se utilizan modelos de conteo para verificar si determinadas características socioeconómicas como la educación o el estrato económico explican la presencia de hijos no deseados. Se encuentra que la educación de la mujer y el área de residencia son determinantes significativos de los nacimientos no planeados. Además, la relación negativa entre el número de hijos no deseados y la educación de la mujer arroja implicaciones clave en materia de política social.
Resumo:
We propose and estimate a financial distress model that explicitly accounts for the interactions or spill-over effects between financial institutions, through the use of a spatial continuity matrix that is build from financial network data of inter bank transactions. Such setup of the financial distress model allows for the empirical validation of the importance of network externalities in determining financial distress, in addition to institution specific and macroeconomic covariates. The relevance of such specification is that it incorporates simultaneously micro-prudential factors (Basel 2) as well as macro-prudential and systemic factors (Basel 3) as determinants of financial distress. Results indicate network externalities are an important determinant of financial health of a financial institutions. The parameter that measures the effect of network externalities is both economically and statistical significant and its inclusion as a risk factor reduces the importance of the firm specific variables such as the size or degree of leverage of the financial institution. In addition we analyze the policy implications of the network factor model for capital requirements and deposit insurance pricing.
Resumo:
La creciente importancia del uso de las aplicaciones SIG en las administraciones públicas, tanto españolas como europeas, ha dado lugar al surgimiento de diversos proyectos de desarrollo de software basados en licencias libres, cada uno de los cuales se dirige a un sector determinado de usuarios. Además, cada uno de estos proyectos define un modelo conceptual de datos para almacenar la información, servicios o módulos para el acceso a esa a información y funcionalidad que se le ofrece al usuario. La mayor parte de las veces estos proyectos se desarrollan de forma independiente a pesar de que existen interrelaciones claras entre todos ellos tales como compartir partes del modelo de datos, el interés común en dar soporte a aplicaciones de gestión municipal o el hecho de utilizar como base los mismos componentes. Estos motivos recomiendan buscar la confluencia entre los proyectos con el objetivo de evitar desarrollos duplicados y favorecer su integración e interoperabilidad. Por este motivo, en Enero de 2009 se constituyó la red signergias que busca mantener en contacto a los responsables de arquitectura y de desarrollo de estos proyectos con el fin de analizar las posibilidades de confluencia y de llegar a acuerdos que permitan compartir modelos de datos, definir de forma conjunta servicios y funcionalidades, o intercambiar componentes de software. En este artículo se describe la motivación de la creación de la red, sus objetivos, su forma de funcionamiento y los resultados alcanzados
Resumo:
This article is about modeling count data with zero truncation. A parametric count density family is considered. The truncated mixture of densities from this family is different from the mixture of truncated densities from the same family. Whereas the former model is more natural to formulate and to interpret, the latter model is theoretically easier to treat. It is shown that for any mixing distribution leading to a truncated mixture, a (usually different) mixing distribution can be found so. that the associated mixture of truncated densities equals the truncated mixture, and vice versa. This implies that the likelihood surfaces for both situations agree, and in this sense both models are equivalent. Zero-truncated count data models are used frequently in the capture-recapture setting to estimate population size, and it can be shown that the two Horvitz-Thompson estimators, associated with the two models, agree. In particular, it is possible to achieve strong results for mixtures of truncated Poisson densities, including reliable, global construction of the unique NPMLE (nonparametric maximum likelihood estimator) of the mixing distribution, implying a unique estimator for the population size. The benefit of these results lies in the fact that it is valid to work with the mixture of truncated count densities, which is less appealing for the practitioner but theoretically easier. Mixtures of truncated count densities form a convex linear model, for which a developed theory exists, including global maximum likelihood theory as well as algorithmic approaches. Once the problem has been solved in this class, it might readily be transformed back to the original problem by means of an explicitly given mapping. Applications of these ideas are given, particularly in the case of the truncated Poisson family.
Resumo:
The technique of constructing a transformation, or regrading, of a discrete data set such that the histogram of the transformed data matches a given reference histogram is commonly known as histogram modification. The technique is widely used for image enhancement and normalization. A method which has been previously derived for producing such a regrading is shown to be “best” in the sense that it minimizes the error between the cumulative histogram of the transformed data and that of the given reference function, over all single-valued, monotone, discrete transformations of the data. Techniques for smoothed regrading, which provide a means of balancing the error in matching a given reference histogram against the information lost with respect to a linear transformation are also examined. The smoothed regradings are shown to optimize certain cost functionals. Numerical algorithms for generating the smoothed regradings, which are simple and efficient to implement, are described, and practical applications to the processing of LANDSAT image data are discussed.