985 resultados para Direct sequencing
Resumo:
Mutations in 11 genes that encode ion channels or their associated proteins cause inherited long QT syndrome (LQTS) and account for approximately 75-80% of cases (LQT1-11). Direct sequencing of SNTA1, the gene encoding alpha1-syntrophin, was performed in a cohort of LQTS patients that were negative for mutations in the 11 known LQTS-susceptibility genes. A missense mutation (A390V-SNTA1) was found in a patient with recurrent syncope and markedly prolonged QT interval (QTc, 530 ms). SNTA1 links neuronal nitric oxide synthase (nNOS) to the nNOS inhibitor plasma membrane Ca-ATPase subtype 4b (PMCA4b); SNTA1 also is known to associate with the cardiac sodium channel SCN5A. By using a GST-fusion protein of the C terminus of SCN5A, we showed that WT-SNTA1 interacted with SCN5A, nNOS, and PMCA4b. In contrast, A390V-SNTA1 selectively disrupted association of PMCA4b with this complex and increased direct nitrosylation of SCN5A. A390V-SNTA1 expressed with SCN5A, nNOS, and PMCA4b in heterologous cells increased peak and late sodium current compared with WT-SNTA1, and the increase was partially inhibited by NOS blockers. Expression of A390V-SNTA1 in cardiac myocytes also increased late sodium current. We conclude that the A390V mutation disrupted binding with PMCA4b, released inhibition of nNOS, caused S-nitrosylation of SCN5A, and was associated with increased late sodium current, which is the characteristic biophysical dysfunction for sodium-channel-mediated LQTS (LQT3). These results establish an SNTA1-based nNOS complex attached to SCN5A as a key regulator of sodium current and suggest that SNTA1 be considered a rare LQTS-susceptibility gene.
Resumo:
We have developed a novel way to assess the mutagenicity of environmentally important metal carcinogens, such as nickel, by creating a positive selection system based upon the conditional expression of a retroviral transforming gene. The target gene is the v-mos gene in MuSVts110, a murine retrovirus possessing a growth temperature dependent defect in expression of the transforming gene due to viral RNA splicing. In normal rat kidney cells infected with MuSVts110 (6m2 cells), splicing of the MuSVts110 RNA to form the mRNA from which the transforming protein, p85$\sp{\rm gag-mos}$, is translated is growth-temperature dependent, occurring at 33 C and below but not at 39 C and above. This splicing "defect" is mediated by cis-acting viral sequences. Nickel chloride treatment of 6m2 cells followed by growth at 39 C, allowed the selection of "revertant" cells which constitutively express p85$\sp{\rm gag-mos}$ due to stable changes in the viral RNA splicing phenotype, suggesting that nickel, a carcinogen whose mutagenicity has not been well established, could induce mutations in mammalian genes. We also show by direct sequencing of PCR-amplified integrated MuSVts110 DNA from a 6m2 nickel-revertant cell line that the nickel-induced mutation affecting the splicing phenotype is a cis-acting 70-base duplication of a region of the viral DNA surrounding the 3$\sp\prime$ splice site. These findings provide the first example of the molecular basis for a nickel-induced DNA lesion and establish the mutagenicity of this potent carcinogen. ^
Resumo:
The initial step in coronavirus-mouse hepatitis virus (MHV) replication is the synthesis of negative strand RNA from a positive strand genomic RNA template. Our approach to studying MHV RNA replication is to identify the cis-acting signals for RNA synthesis and the protein(s) which recognizes these signals at the 3$\sp\prime$ end of genomic RNA of MHV. To determine whether host cellular and/or virus-specific proteins interact with the 3$\sp\prime$ end of the coronavirus genome, an RNase T$\sb1$ protection/gel mobility shift electrophoresis assay was used to examine cytoplasmic extracts from either mock- or MHV-JHM-infected 17Cl-1 murine cells for the ability to form complexes with defined regions of the genomic RNA. A conserved 11 nucleotide sequence UGAAUGAAGUU at nucleotide positions 36 to 26 from the 3$\sp\prime$ end of genomic RNA was identified to be responsible for the specific binding of host proteins, by using a series of RNA probes with deletions and mutations in this region. The RNA probe containing the 11 nucleotide sequence bound approximately four host cellular proteins with a highly labeled 120 kDa and three minor species with sizes of 103, 81 and 55 kDa, assayed by UV-induced covalent cross-linking. Mutation of the 11 nucleotide motif strongly inhibited cellular protein binding, and decreased the amount of the 103 and 81 kDa proteins in the complex to undetectable levels and strongly reduced the binding of the 120 kDa protein. Less extensive mutations within this 11 nucleotide motif resulted in variable decreases in RNA-protein complex formation depending on each probe tested. The RNA-protein complexes observed with cytoplasmic extracts from MHV-JHM-infected cells in both RNase protection/gel mobility shift and UV cross-linking assays were indistinguishable to those observed with extracts from uninfected cells.^ To investigate the possible role of this 3$\sp\prime$ protein binding element in viral RNA replication in vivo, defective interfering RNA molecules with complete or partial mutations of the 11 nucleotide conserved sequence were transcribed in vitro, transfected to host 17Cl-1 cells in the presence of helper virus MHV-JHM and analyzed by agarose gel electrophoresis, competitive RT-PCR and direct sequencing of the RT-PCR products. Both negative strand synthesis and positive strand replication of DI RNA were affected by mutation that disrupts RNA-protein complex formation, even though the 11 mutated nucleotides were converted to wild type sequence, presumably by recombination with helper virus. Kinetic analysis indicated that recombination between DI RNA and helper virus occurred 5.5 to 7.5 hours post infection when replication of positive strand DI RNA was barely observed. Replication of positive strand DI RNAs carrying partial mutations within the 11 nucleotide motif was dependent upon recombination events after transfection. Replication was strongly inhibited when reversion to wild type sequence did not occur, and after recombination, reached similar levels as wild type DI RNA. A DI RNA with mutation upstream of the protein binding motif replicated as efficiently as wild type without undergoing recombination. Thus the conserved 11 nucleotide host protein binding motif appears to play an important role in viral RNA replication. ^
Resumo:
BCL2 is a target of somatic hypermutation in t(14;18) positive and also in a small fraction of t(14;18) negative diffuse large B-cell lymphoma (DLBCL), suggesting an aberrant role of somatic hypermutation (ASHM). To elucidate the prevalence of BCL2 mutations in lymphomas other than DLBCL, we Sanger-sequenced the hypermutable region of the BCL2 gene in a panel of 69 mature B-cell lymphomas, including Richter's syndrome DLBCL, marginal-zone lymphomas, post-transplant lymphoproliferative disorders, HIV-associated and common-variable immunodeficiency-associated DLBCL, all known to harbour ASHM-dependent mutations in other genes, as well as 16 t(14,18) negative and 21 t(14;18) positive follicular lymphomas (FLs). We also investigated the pattern of BCL2 mutations in longitudinal samples from 10 FL patients relapsing to FL or transforming to DLBCL (tFL). By direct sequencing, we found clonally represented BCL2 mutations in 2/16 (13%) of t(14;18) negative FLs, 2/16 (13%) HIV-DLBCLs, 1/9 (11%) of Richter's syndrome DLBCL, 1/17 (6%) of post-transplant lymphoproliferative disorders and 1/2 (50%) common-variable immunodeficiency-associated DLBCL. The proportion of mutated cases was significantly lower than in FLs carrying the t(14;18) translocation (15/21, 71%). However, the absence of t(14;18) by FISH or PCR and the molecular features of the mutations strongly suggest that BCL2 represents an additional target of ASHM in these entities. Analysis of the BCL2 mutation pattern in clonally related FL/FL and FL/tFL samples revealed two distinct scenarios of genomic evolution: (i) direct evolution from the antecedent FL clone, with few novel clonal mutations acquired by the tFL major clone, and (ii) evolution from a common mutated long-lived progenitor cell, which subsequently acquired distinct mutations in the FL and in the relapsed or transformed counterpart. Copyright © 2014 John Wiley & Sons, Ltd.
Resumo:
Background: Access to hepatitis B viral load (VL) testing is poor in sub-Saharan Africa (SSA) due toeconomic and logistical reasons.Objectives: To demonstrate the feasibility of testing dried blood spots (DBS) for hepatitis B virus (HBV)VL in a laboratory in Lusaka, Zambia, and to compare HBV VLs between DBS and plasma samples.Study design: Paired plasma and DBS samples from HIV-HBV co-infected Zambian adults were analyzedfor HBV VL using the COBAS AmpliPrep/COBAS TaqMan HBV test (Version 2.0) and for HBV genotypeby direct sequencing. We used Bland-Altman analysis to compare VLs between sample types and bygenotype. Logistic regression analysis was conducted to assess the probability of an undetectable DBSresult by plasma VL.Results: Among 68 participants, median age was 34 years, 61.8% were men, and median plasma HBV VLwas 3.98 log IU/ml (interquartile range, 2.04–5.95). Among sequenced viruses, 28 were genotype A1 and27 were genotype E. Bland–Altman plots suggested strong agreement between DBS and plasma VLs. DBSVLs were on average 1.59 log IU/ml lower than plasma with 95% limits of agreement of −2.40 to −0.83 logIU/ml. At a plasma VL ≥2,000 IU/ml, the probability of an undetectable DBS result was 1.8% (95% CI:0.5–6.6). At plasma VL ≥20,000 IU/ml this probability reduced to 0.2% (95% CI: 0.03–1.7).
Resumo:
Neural tube defects (NTDs) are the most common severely disabling birth defects in the United States, with a frequency of approximately 1–2 of every 1,000 births. This text includes the identification and evaluation of candidate susceptibility genes that confer risk for the development of neural tube defects (NTDs). The project focused on isolated meningomyelocele, also termed spina bifida (SB). ^ Spina bifida is a complex disease with multifactorial inheritance, therefore the subject population (consisting of North American Caucasians and Hispanics of Mexicali-American descent) was composed of 459 simplex SB families who were tested for genetic associations utilizing the transmission disequilibrium test (TDT), a nonparametric linkage technique. Three categories of candidate genes were studied, including (1) human equivalents of genes determined in mouse models to cause NTDs, (2) HOX and PAX genes, and (3) the MTHFR gene involved in the metabolic pathway of folate. ^ The C677T variant of the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene was the first mutation in this gene to be implicated as a risk factor for NTDs. Our evaluation of the MTHFR gene provides evidence that maternal C677T homozygosity is a risk factor for upper level spina bifida defects in Hispanics [OR = 2.3, P = 0.02]. This observed risk factor is of great importance due to the high prevalence of this homozygous genotype in the Hispanic population. Additionally, maternal C677T/A1298C compound heterozygosity is a risk factor for upper level spina bifida defects in non-Hispanic whites [OR = 3.6, P = 0.03]. ^ For TDT analysis, our total population of 1128 subjects were genotyped for 54 markers from within and/or flanking the 20 candidate genes/gene regions of interest. Significant TDT findings were obtained for 3 of the 54 analyzed markers: d20s101 flanking the PAX1 gene (P = 0.019), d1s228 within the PAX7 gene (P = 0.011), and d2s110 within the PAX8 gene (P = 0.013). These results were followed-up by testing the genes directly for mutations utilizing single-strand conformational analysis (SSCA) and direct sequencing. Multiple variations were detected in each of these PAX genes; however, these variations were not passed from parent to child in phase with the positively transmitted alleles. Therefore, these variations do not contribute to the susceptibility of spina bifida, but rather are previously unreported single nucleotide polymorphisms. ^
Resumo:
β-catenin has functions as both an adhesion and a signaling molecule. Disruption of these functions through mutations of the β-catenin gene (CTNNB1) may be important in the development of colorectal tumors. We examined the entire coding sequence of β-catenin by reverse transcriptase–PCR (RT-PCR) and direct sequencing of 23 human colorectal cancer cell lines from 21 patients. In two cell lines, there was apparent instability of the β-catenin mRNA. Five different mutations (26%) were found in the remaining 21cell lines (from 19 patients). A three-base deletion (codon 45) was identified in the cell line HCT 116, whereas cell lines SW 48, HCA 46, CACO 2, and Colo 201 each contained single-base missense mutations (codons 33, 183, 245, and 287, respectively). All 23 cell lines had full-length β-catenin protein that was detectable by Western blotting and that coprecipitated with E-cadherin. In three of the cell lines with CTNNB1 mutations, complexes of β-catenin with α-catenin and APC were detectable. In SW48 and HCA 46, however, we did not detect complexes of β-catenin protein with α-catenin and APC, respectively. These results show that selection of CTNNB1 mutations occurs in up to 26% of colorectal cancers from which cell lines are derived. In these cases, mutation selection is probably for altered β-catenin function, which may significantly alter intracellular signaling and intercellular adhesion and may serve as a complement to APC mutations in the early stages of tumorigenesis.
Resumo:
Epithelial (E)-cadherin and its associated cytoplasmic proteins (α-, β-, and γ-catenins) are important mediators of epithelial cell–cell adhesion and intracellular signaling. Much evidence exists suggesting a tumor/invasion suppressor role for E-cadherin, and loss of expression, as well as mutations, has been described in a number of epithelial cancers. To investigate whether E-cadherin gene (CDH1) mutations occur in colorectal cancer, we screened 49 human colon carcinoma cell lines from 43 patients by single-strand conformation polymorphism (SSCP) analysis and direct sequencing. In addition to silent changes, polymorphisms, and intronic variants in a number of the cell lines, we detected frameshift single-base deletions in repeat regions of exon 3 (codons 120 and 126) causing premature truncations at codon 216 in four replication-error-positive (RER+) cell lines (LS174T, HCT116, GP2d, and GP5d) derived from 3 patients. In LS174T such a mutation inevitably contributes to its lack of E-cadherin protein expression and function. Transfection of full-length E-cadherin cDNA into LS174T cells enhanced intercellular adhesion, induced differentiation, retarded proliferation, inhibited tumorigenicity, and restored responsiveness to the migratory effects induced by the motogenic trefoil factor 2 (human spasmolytic polypeptide). These results indicate that, although inactivating E-cadherin mutations occur relatively infrequently in colorectal cancer cell lines overall (3/43 = 7%), they are more common in cells with an RER+ phenotype (3/10 = 30%) and may contribute to the dysfunction of the E-cadherin–catenin-mediated adhesion/signaling system commonly seen in these tumors. These results also indicate that normal E-cadherin-mediated cell adhesion can restore the ability of colonic tumor cells to respond to trefoil factor 2.
Resumo:
Choline acetyltransferase (ChAT; EC 2.3.1.6) catalyzes the reversible synthesis of acetylcholine (ACh) from acetyl CoA and choline at cholinergic synapses. Mutations in genes encoding ChAT affecting motility exist in Caenorhabditis elegans and Drosophila, but no CHAT mutations have been observed in humans to date. Here we report that mutations in CHAT cause a congenital myasthenic syndrome associated with frequently fatal episodes of apnea (CMS-EA). Studies of the neuromuscular junction in this disease show a stimulation-dependent decrease of the amplitude of the miniature endplate potential and no deficiency of the ACh receptor. These findings point to a defect in ACh resynthesis or vesicular filling and to CHAT as one of the candidate genes. Direct sequencing of CHAT reveals 10 recessive mutations in five patients with CMS-EA. One mutation (523insCC) is a frameshifting null mutation. Three mutations (I305T, R420C, and E441K) markedly reduce ChAT expression in COS cells. Kinetic studies of nine bacterially expressed ChAT mutants demonstrate that one mutant (E441K) lacks catalytic activity, and eight mutants (L210P, P211A, I305T, R420C, R482G, S498L, V506L, and R560H) have significantly impaired catalytic efficiencies.
Resumo:
The key requirements for high-throughput single-nucleotide polymorphism (SNP) typing of DNA samples in large-scale disease case-control studies are automatability, simplicity, and robustness, coupled with minimal cost. In this paper we describe a fluorescence technique for the detection of SNPs that have been amplified by using the amplification refractory mutation system (ARMS)-PCR procedure. Its performance was evaluated using 32 sequence-specific primer mixes to assign the HLA-DRB alleles to 80 lymphoblastoid cell line DNAs chosen from our database for their diversity. All had been typed previously by alternative methods, either direct sequencing or gel electrophoresis. We believe the detection system that we call AMDI (alkaline-mediated differential interaction) satisfies the above criteria and is suitable for general high-throughput SNP typing.
Resumo:
Mutations in the human phosphofructokinase muscle subunit gene (PFKM) are known to cause myopathy classified as glycogenosis type VII (Tarui disease). Previously described molecular defects include base substitutions altering encoded amino acids or resulting in abnormal splicing. We report a mutation resulting in phosphofructokinase deficiency in three patients from an Ashkenazi Jewish family. Using a reverse transcription PCR assay, PFKM subunit transcripts differing by length were detected in skeletal muscle tissue of all three affected subjects. In the longer transcript, an insertion of 252 nucleotides totally homologous to the structure of the 10th intron of the PFKM gene was found separating exon 10 from exon 11. In addition, two single base transitions were identified by direct sequencing: [exon 6; codon 95; CGA (Arg) to TGA (stop)] and [exon 7; codon 172; ACC (Thr) to ACT (Thr)] in either transcript. Single-stranded conformational polymorphism and restriction enzyme analyses confirmed the presence of these point substitutions in genomic DNA and strongly suggested homozygosity for the pathogenic allele. The nonsense mutation at codon 95 appeared solely responsible for the phenotype in these patients, further expanding genetic heterogeneity of Tarui disease. Transcripts with and without intron 10 arising from identical mutant alleles probably resulted from differential pre-mRNA processing and may represent a novel message from the PFKM gene.
Resumo:
Neuroblastoma (NB), a tumor arising from the sympathetic nervous system, is one of the most common malignancies in childhood. Several recent reports on the p53 genotype found virtually exclusive wild-type status in primary tumors, and it was postulated that p53 plays no role in the development of NB. Here, however, we report that the vast majority of undifferentiated NBs exhibit abnormal cytoplasmic sequestration of wild-type p53. This inability of p53 to translocate to the nucleus presumably prevents the protein from functioning as a suppressor. Thirty of 31 cases (96%) of undifferentiated NB showed elevated levels of wild-type p53 in the cytoplasm of all tumor cells concomittant with a lack of nuclear staining. p53 immunoprecipitation from tumor tissues showed a 4.5- to 8-fold increase over normal protein levels. All of 10 tumors analyzed harbored wild-type p53 by direct sequencing of full-length cDNA and Southern blot. In addition, no MDM-2 gene amplification was seen in all 11 tumors analyzed. In contrast, no p53 abnormality was detected in 14 differentiated ganglioneuroblastomas and 1 benign ganglioneuroma. We conclude that loss of p53 function seems to play a major role in the tumorigenesis of undifferentiated NB. This tumor might abrogate the transactivating function of p53 by inhibiting its access to the nucleus, rather than by gene mutation. Importantly, our results suggest that (i) this could be a general mechanism for p53 inactivation not limited to breast cancer (where we first described it) and that (ii) it is found in a tumor previously not thought to be affected by p53 alteration.
Resumo:
We assembled a DNA clone containing the 11,161-nt sequence of the prototype rhabdovirus, vesicular stomatitis virus (VSV), such that it could be transcribed by the bacteriophage T7 RNA polymerase to yield a full-length positive-strand RNA complementary to the VSV genome. Expression of this RNA in cells also expressing the VSV nucleocapsid protein and the two VSV polymerase subunits resulted in production of VSV with the growth characteristics of wild-type VSV. Recovery of virus from DNA was verified by (i) the presence of two genetic tags generating restriction sites in DNA derived from the genome, (ii) direct sequencing of the genomic RNA of the recovered virus, and (iii) production of a VSV recombinant in which the glycoprotein was derived from a second serotype. The ability to generate VSV from DNA opens numerous possibilities for the genetic analysis of VSV replication. In addition, because VSV can be grown to very high titers and in large quantities with relative ease, it may be possible to genetically engineer recombinant VSVs displaying foreign antigens. Such modified viruses could be useful as vaccines conferring protection against other viruses.
Resumo:
The potential for large-scale use of a sensitive real time reverse transcription polymerase chain reaction (RT-PCR) assay was evaluated for the detection of Tomato spotted wilt virus (TSWV) in single and bulked leaf samples by comparing its sensitivity with that of DAS-ELISA. Using total RNA extracted with RNeasy (R) or leaf soak methods, real time RT-PCR detected TSWV in all infected samples collected from 16 horticultural crop species (including flowers, herbs and vegetables), two arable crop species, and four weed species by both assays. In samples in which DAS-ELISA had previously detected TSWV, real time RT-PCR was effective at detecting it in leaf tissues of all 22 plant species tested at a wide range of concentrations. Bulk samples required more robust and extensive extraction methods with real time RT-PCR, but it generally detected one infected sample in 1000 uninfected ones. By contrast, ELISA was less sensitive when used to test bulked samples, once detecting up to I infected in 800 samples with pepper but never detecting more than I infected in 200 samples in tomato and lettuce. It was also less reliable than real time RT-PCR when used to test samples from parts of the leaf where the virus concentration was low. The genetic variability among Australian isolates of TSWV was small. Direct sequencing of a 587 bp region of the nucleoprotein gene (S RNA) of 29 isolates from diverse crops and geographical locations yielded a maximum of only 4.3% nucleotide sequence difference. Phylogenetic analysis revealed no obvious groupings of isolates according to geographic origin or host species. TSWV isolates, that break TSWV resistance genes in tomato or pepper did not differ significantly in the N gene region studied, indicating that a different region of the virus genome is responsible for this trait.
Resumo:
An international collection of the sugarcane ratoon stunting disease pathogen, Leifsonia xyli subsp. xyli, was analysed to assess genetic diversity. DNA fingerprinting using BOX primers was performed on 105 isolates, comprising 65 Australian isolates and an additional 40 isolates from Indonesia (n = 8), Japan (n = 1), USA (n = 3), Brazil (n = 2), Mali (n = 2), Zimbabwe (n = 13), South Africa (n = 9) and Reunion (n = 2). Sixty-two of these isolates were also screened using ERIC primers. No variation was found among any of the isolates. The intergenic spacer (IGS) region of the ribosomal RNA genes from 54 isolates was screened for sequence variation using single-stranded conformational polymorphism (SSCP), but none was observed. Direct sequencing of the IGS from a subset of nine isolates, representing all of the countries sampled in this study, confirmed the results of the SSCP analysis. Likewise, no sequence variation was found in the 16S ribosomal RNA genes of the same subset. Four Colombian isolates from sugarcane, morphologically similar to L. xyli subsp. xyli, were putatively shown to be an undescribed Agrococcus species of unknown pathogenicity. The lack of genetic variation among L. xyli subsp. xyli isolates, independent of time of sampling, cultivar of isolation, or country of origin, suggests the worldwide spread of a single pathogenic clone, and further suggests that sugarcane cultivars resistant to ratoon stunting disease in one area should retain this property in other regions.