176 resultados para Dikes.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the Sr, Nd and Pb isotopic compositions (1) of 66 lava flows and dikes spanning the circa 15 Myr subaerial volcanic history of Gran Canaria and (2) of five Miocene through Cretaceous sediment samples from DSDP site 397, located 100 km south of Gran Canaria. The isotope ratios of the Gran Canaria samples vary for 87Sr/86Sr: 0.70302-0.70346, for 143Nd/144Nd: 0.51275-0.51298, and for 206Pb/204Pb: 18.76-20.01. The Miocene and the Pliocene-Recent volcanics form distinct trends on isotope correlation diagrams. The most SiO2-undersaturated volcanics from each group have the least radiogenic Sr and most radiogenic Pb, whereas evolved volcanics from each group have the most radiogenic Sr and least radiogenic Pb. In the Pliocene-Recent group, the most undersaturated basalts also have the most radiogenic Nd, and the evolved volcanics have the least radiogenic Nd. The most SiO2-saturated basalts have intermediate compositions within each age group. Although the two age groups have overlapping Sr and Nd isotope ratios, the Pliocene-Recent volcanics have less radiogenic Pb than the Miocene volcanics. At least four components are required to explain the isotope systematics of Gran Canaria by mixing. There is no evidence for crustal contamination in any of the volcanics. The most undersaturated Miocene volcanics fall within the field for the two youngest and westernmost Canary Islands in all isotope correlation diagrams and thus appear to have the most plume-like (high 238U/204Pb) HIMU-like composition. During the Pliocene-Recent epochs, the plume was located to the west of Gran Canaria. The isotopic composition of the most undersaturated Pliocene-Recent volcanics may reflect entrainment of asthenospheric material (with a depleted mantle (DM)-like composition), as plume material was transported through the upper asthenosphere to the base of the lithosphere beneath Gran Canaria. The shift in isotopic composition with increasing SiO2-saturation in the basalts and degree of differentiation for all volcanics is interpreted to reflect assimilation of enriched mantle (EM1 and EM2) in the lithosphere beneath Gran Canaria. This enriched mantle may have been derived from the continental lithospheric mantle beneath the West African Craton by thermal erosion or delamination during rifting of Pangaea. This study suggests that the enriched mantle components (EM1 and EM2) may be stored in the shallow mantle, whereas the HIMU component may have a deeper origin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The majority of the basalts drilled on Leg 65 in the Gulf of California are aphyric to sparsely phyric massive flows ranging in average thickness between 5 meters in the upper part of the sections in Holes 483 and 483B, where they are interlayered with sediment, and 14 meters in Hole 485A, where interlayered sediments constitute more than half of the section. Massive flows interlayered with pillows are generally less than 4 meters thick. The pillow lavas recovered are more phyric (up to 15 modal%) and contain two to three generations of plagioclase and olivine ± clinopyroxene. Plagioclase generally exceeds 60% of any given phenocryst assemblage. Resorbed olivine, clinopyroxene, and plagioclase megacrysts may reflect a high-pressure stage, the phenocrysts crystallizing in the main magma chamber and the skeletal microphenocrysts in dikes. Precise measurements of length/width ratios of different phenocryst types and compositions show low aspect ratios and large crystal volumes for early crystals and high ratios and low volumes for late crystals grown under strong undercooling conditions. The minerals examined show wide ranges in composition: in particular, plagioclase ranges from An92 to An36; clinopyroxene ranges from Ca41Mg51Fe8 in the cores of phenocrysts to Ca40**36 Mg45**49Fe15**20 in the groundmass; and olivine ranges from Fo86 to Fo81. The wide range in mineral compositions, together with evidence of disequilibrium based on textures and comparisons of glass and mineral compositions, indicate complex crystallization histories involving both polybaric crystal fractionation and magma mixing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In western Neuschwabenland basic dikes occur in the Jurassic lavas and Permian sediments of Vestfjella as weil as in the Precambrian sedimentary-volcanogenic rock sequence of the Ahlmannryggen and in the Precambrian crystalline complexes of Heimefrontfjella and Mannefallknausane. The concentration of the dikes in Vestfjella is conspicuous. Two main directions of strike perpendicular to each other are recognizable, from which the NE-SW striking one is predominant. The direction of the dikes coincides with the Mesozoic and younger fracture tectonics. Age relationships by structural, petrographical and geochemical observations are confirmed by palaeomagnetic and radiometrie age determinations from PETERS et al. (1986). Considerations on the geochemistry of further dolerite occurrences from Antarctica and other regions of the Gondwana continent are pointed out. Finally comparisons with the analogous South African dike system show the geotectonic significance of the dolerite dikes for the break-up of Gondwana.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DSDP Hole 504B is the deepest basement hole in the oceanic crust, penetrating through a 571.5 m pillow section, a 209 m lithologic transition zone, and 295 m into a sheeted dike complex. An oxygen isotopic profile through the upper crust at Site 504 is similar to that in many ophiolite complexes, where the extrusive section is enriched in 18O relative to unaltered basalts, and the dike section is variably depleted and enriched. Basalts in the pillow section at Site 504 have delta 18O values generally ranging from +6.1 to +8.5? SMOW (mean= +7.0?), although minor zeolite-rich samples range up to 12.7?. Rocks depleted in 18O appear abruptly at 624 m sub-basement in the lithologic transition from 100% pillows to 100% dikes, coinciding with the appearance of greenschist facies minerals in the rocks. Whole-rock values range to as low as +3.6?, but the mean values for the lithologic transition zone and dike section are +5.8 and +5.4?, respectively. Oxygen and carbon isotopic data for secondary vein minerals combined with the whole rock data provide evidence for the former presence of two distinct circulation systems separated by a relatively sharp boundary at the top of the lithologic transition zone. The pillow section reacted with seawater at low temperatures (near 0°C up to a maximum of around 150°C) and relatively high water/rock mass ratios (10-100); water/rock ratios were greater and conditions were more oxidizing during submarine weathering of the uppermost 320 m than deeper in the pillow section. The transition zone and dikes were altered at much higher temperatures (up to about 350°C) and generally low water/rock mass ratios (~1), and hydrothermal fluids probably contained mantle-derived CO2. Mixing of axial hydrothermal fluids upwelling through the dike section with cooler seawater circulating in the overlying pillow section resulted in a steep temperature gradient (~2.5°C/m) across a 70 m interval at the top of the lithologic transition zone. Progressive reaction during axial hydrothermal metamorphism and later off-axis alteration led to the formation of albite- and Ca-zeolite-rich alteration halos around fractures. This enhanced the effects of cooling and 18O enrichment of fluids, resulting in local increases in delta 18O of rocks which had been previously depleted in 18O during prior axial metamorphism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon and hydrogen concentrations and isotopic compositions were measured in 19 samples from altered oceanic crust cored in ODP/IODP Hole 1256D through lavas, dikes down to the gabbroic rocks. Bulk water content varies from 0.32 to 2.14 wt% with dD values from -64per mil to -25per mil. All samples are enriched in water relative to fresh basalts. The dD values are interpreted in terms of mixing between magmatic water and another source that can be either secondary hydrous minerals and/or H contained in organic compounds such as hydrocarbons. Total CO2, extracted by step-heating technique, ranges between 564 and 2823 ppm with d13C values from -14.9per mil to -26.6per mil. As for water, these altered samples are enriched in carbon relative to fresh basalts. The carbon isotope compositions are interpreted in terms of a mixing between two components: (1) a carbonate with d13C = -4.5per mil and (2) an organic compound with d13C = -26.6per mil. A mixing model calculation indicates that, for most samples (17 of 19), more than 75% of the total C occurs as organic compounds while carbonates represent less than 25%. This result is also supported by independent estimates of carbonate content from CO2 yield after H3PO4 attack. A comparison between the carbon concentration in our samples, seawater DIC (Dissolved Inorganic Carbon) and DOC (Dissolved Organic Carbon), and hydrothermal fluids suggests that CO2 degassed from magmatic reservoirs is the main source of organic C addition to the crust during the alteration process. A reduction step of dissolved CO2 is thus required, and can be either biologically mediated or not. Abiotic processes are necessary for the deeper part of the crust (>1000 mbsf) because alteration temperatures are greater than any hyperthermophilic living organism (i.e. T > 110 °C). Even if not required, we cannot rule out the contribution of microbial activity in the low-temperature alteration zones. We propose a two-step model for carbon cycling during crustal alteration: (1) when "fresh" oceanic crust forms at or close to ridge axis, alteration starts with hot hydrothermal fluids enriched in magmatic CO2, leading to the formation of organic compounds during Fischer-Tropsch-type reactions; (2) when the crust moves away from the ridge axis, these interactions with hot hydrothermal fluids decrease and are replaced by seawater interactions with carbonate precipitation in fractures. Taking into account this organic carbon, we estimate C isotope composition of mean altered oceanic crust at ? -4.7per mil, similar to the d13C of the C degassed from the mantle at ridge axis, and discuss the global carbon budget. The total flux of C stored in the altered oceanic crust, as carbonate and organic compound, is 2.9 ± 0.4 * 10**12 molC/yr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Altered basalt dikes from Hole 504B were partially melted at 1150°C and 1180°C to determine the composition of the first melts as oceanic Layer 2C is assimilated by a magma chamber. The partial melts are chemically similar to actinolite, the most abundant secondary mineral, but the melts are not simply melted actinolite. High TiO2, P2O5, and K2O abundances of the melts indicate that minor secondary minerals that are enriched in these elements also contribute to the melt. The incorporation of partial melts into a ridge-crest magma chamber may explain the local variability that is sometimes found in ocean ridge basalts that are not readily explained fractional crystallization or partial melting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Proterozoic country rock at Ahlmannryggen consists of flat lying basaltic lo andesitic lava flows and sedimentary rocks intruded by dioritic sills (Borgmassivet Intrusives). The suites display a typical platform cover. K-Ar age determinations gave maximum ages of about 1200 Ma on the magmatic rocks. All these suites were intruded bv Proterozoic dikes dated also at about 1200 Ma. Localiy the Proterozoic rocks have a slaty cleavage grading into mylonitic texture which strike parallel to the Jutul Penck graben. Such tectonic structures were dated at 525 Ma using syntectonic white micas. Evidence of the break-up of Gondwana during the Early Jurassic/Triassic is given by dikes at Ahlmannryggen and lava flows, dikes and sills at Vestfjella. At Ahlmannryggen the initial rift phase is documented by the development of the Jutul Penck graben and the intrusion of the 200-250 Ma continental-tholeiitic dikes striking parallel to the graben axis. The lava flows, dikes and sills at Vestfjella represent a later stage of the Gondwana break-up at about 180 Ma that probably reflects the initial stage of the opening of the Weddell Sea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DSDP Hole 504B was drilled into 6 Ma crust, about 200 km south of the Costa Rica Rift, Galapagos Spreading Center, penetrating 1.35 km into a section that can be divided into four zones-Zone I: oxic submarine weathering; Zone II: anoxic alteration; Zones III and IV: hydrothermal alteration to greenschist facies. In Zone III there is intense veining of pillow basalts. Zone IV consists of altered sheeted dikes. Isotopic geochemical signatures in relation to the alteration zones are recorded in Hole 504B, as follows: Zone Depth(m) Average87Sr/86Sr Average delta18O (?) Average deltaD (?) I 275-550 0.7032 7.3 -63 II 550-890 0.7029 6.5 -45 III 890-1050 0.7035 5.6 -31 IV 1050-1350 0.7032 5.5 -36 Alteration temperatures are as low as 10°C in Zones I and II based on oxygen isotope fractionation. Strontium isotopic data indicate that a circulation of seawater is much more restricted in Zone II than in Zone I. Fluid inclusion measurements of vein quartz indicate the alteration temperature was mainly 300 +/- 20°C in Zones III and IV, which is consistent with secondary mineral assemblages. The strontium, oxygen, and hydrogen isotopic compositions of hydrothermal fluids which were responsible for the greenschist facies alteration in Zones III and IV are estimated to be 0.7037, 2?, and 3?, respectively. Strontium and oxygen isotope data indicate that completely altered portions of greenstones and vein minerals were in equilibrium with modified seawater under low water/rock ratios (in weight) of about 1.6. This value is close to that of the end-member hydrothermal fluids issuing at 21°N EPR. Basement rocks are not completely hydrothermally altered. About 32% of the greenstones in Zones III and IV have escaped alteration. Thus 1 g of fresh basalt including the 32% unaltered portion are required in order to make 1 g of end-member solution from fresh seawater in water-rock reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twenty-six samples representing the wide range of lithologies (low- and intermediate-Ca boninites and bronzite andesites, high-Ca boninites, basaltic andesites-rhyolites) drilled during Leg 125 at Sites 782 and 786 on the Izu-Bonin outer-arc high have been analyzed for Sr, Nd, and Pb isotopes. Nd-Sr isotope covariations show that most samples follow a trend parallel to a line from Pacific MORB mantle (PMM) to Pacific Volcanogenic sediment (PVS) but displaced slightly toward more radiogenic Sr. Pb isotope covariations show that all the Eocene-Oligocene samples plot along the Northern Hemisphere Reference Line, indicating little or no Pb derived from subducted pelagic sediment in their source. Two young basaltic andesite clasts within sediment do have a pelagic sediment signature but this may have been gained by alteration rather than subduction. In all isotopic projections, the samples form consistent groupings: the tholeiites from Site 782 and Hole 786A plot closest to PMM, the boninites and related rocks from Sites 786B plot closest to PVS, and the boninite lavas from Hole 786A and late boninitic dikes from Hole 786B occupy an intermediate position. Isotope-trace element covariations indicate that these isotopic variations can be explained by a three-component mixing model. One component (A) has the isotopic signature of PMM but is depleted in the more incompatible elements. It is interpreted as representing suboceanic mantle lithosphere. A second component (B) is relatively radiogenic (epsilon-Nd = ca 4-6; 206Pb/204Pb = ca 19.0-19.3; epsilon-Sr = ca -10 to -6)). Its trace element pattern has, among other characteristics, a high Zr/Sm ratio, which distinguishes it from the ìnormalî fluid components associated with subduction and hotspot activity. There are insufficient data at present to tie down its origin: probably it was either derived from subducted lithosphere or volcanogenic sediment fused in amphibolite facies; or it represents an asthenospheric melt component that has been fractionated by interaction with amphibole-bearing mantle. The third component (C) is characterized by high contents of Sr and high epsilon-Sr values and is interpreted as a subducted fluid component. The mixing line on a diagram of Zr/Sr against epsilon-Sr suggests that component C may have enriched the lithosphere (component A) before component B. These components may also be present on a regional basis but, if so, may not have had uniform compositions. Only the boninitic series from nearby Chichijima would require an additional, pelagic sediment component. In general, these results are consistent with models of subduction of ridges and young lithosphere during the change from a ridge-transform to subduction geometry at the initiation of subduction in the Western Pacific.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dolerites sampled from the lower sheeted dikes from Hole 504B during Ocean Drilling Program Legs 137 and 140, between 1562.4 and 2000.4 mbsf, were examined to document the mineralogy, petrography, and mineral parageneses associated with secondary alteration, to constrain the thermal history and composition of hydrothermal fluids. The main methods used were mineral chemical analyses by electron microprobe, X-ray diffraction, and cathodoluminescence microscopy. Temperatures of alteration were estimated on the basis of single and/or coexisting mineral chemistry. Permeability is important in controlling the type and extent of alteration in the studied dike section. At the meter-scale, intervals of weakly altered dolerites containing fresh olivine are interpreted as having experienced restricted exposure to hydrothermal fluids. At the centimeter- or millimeter-scale, alteration patches and extensively altered halos adjacent to veins reflect the permeability related to intergranular primary porosity and cracks. Most of the sheeted dike alteration in this case resulted from non-focused, pervasive fluid-rock interaction. This study confirms and extends the previous model for hydrothermal alteration at Hole 504B: hydrothermal alteration at the ridge axis followed by seawater recharge and off-axis alteration. The major new discoveries, all related to higher temperatures of alteration, are: (1) the presence of hydrothermal plagioclase (An80-95), (2) the presence of deuteric and/or hydrothermal diopside, and (3) the general increasing proportion of amphiboles, and particularly magnesio-hornblende with depth. We propose that the dolerites at Hole 504B were altered in five stages. Stage 1 occurred at high temperatures (less than 500° to 700°C) and involved late-magmatic formation of Na- and Ti-rich diopside, the hydrothermal formation of Na, Ti-poor diopside and the hydrothermal formation of an assemblage of An-rich plagioclase + hornblende. Stage 2 occurred at lower temperatures (250°-320°C) and is characterized by the appearance of actinolite, chlorite, chlorite-smectite, and/or talc (in low permeability zones) and albite. During Stage 3, quartz and epidote precipitated from evolved hydrothermal fluids at temperatures between 310° and 320°C. Anhydrite appeared during Stage 4 and likely precipitated directly from heated seawater. Stage 5 occurred off-axis at low temperatures (250°C) with laumontite and prehnite from evolved fluids.