981 resultados para Diffusion measurements


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To prospectively evaluate feasibility and reproducibility of diffusion-weighted (DW) and blood oxygenation level-dependent (BOLD) magnetic resonance (MR) imaging in patients with renal allografts, as compared with these features in healthy volunteers with native kidneys. MATERIALS AND METHODS: The local ethics committee approved the study protocol; patients provided written informed consent. Fifteen patients with a renal allograft and in stable condition (nine men, six women; age range, 20-67 years) and 15 age- and sex-matched healthy volunteers underwent DW and BOLD MR imaging. Seven patients with renal allografts were examined twice to assess reproducibility of results. DW MR imaging yielded a total apparent diffusion coefficient including diffusion and microperfusion (ADC(tot)), as well as an ADC reflecting predominantly pure diffusion (ADC(D)) and the perfusion fraction. R2* of BOLD MR imaging enabled the estimation of renal oxygenation. Statistical analysis was performed, and analysis of variance was used for repeated measurements. Coefficients of variation between and within subjects were calculated to assess reproducibility. RESULTS: In patients, ADC(tot), ADC(D), and perfusion fraction were similar in the cortex and medulla. In volunteers, values in the medulla were similar to those in the cortex and medulla of patients; however, values in the cortex were higher than those in the medulla (P < .05). Medullary R2* was higher than cortical R2* in patients (12.9 sec(-1) +/- 2.1 [standard deviation] vs 11.0 sec(-1) +/- 0.6, P < .007) and volunteers (15.3 sec(-1) +/- 1.1 vs 11.5 sec(-1) +/- 0.5, P < .0001). However, medullary R2* was lower in patients than in volunteers (P < .004). Increased medullary R2* was paralleled by decreased diffusion in patients with allografts. A low coefficient of variation in the cortex and medulla within subjects was obtained for ADC(tot), ADC(D), and R2* (<5.2%), while coefficient of variation within subjects was higher for perfusion fraction (medulla, 15.1%; cortex, 8.6%). Diffusion and perfusion indexes correlated significantly with serum creatinine concentrations. CONCLUSION: DW and BOLD MR imaging are feasible and reproducible in patients with renal allografts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: Diffusion-weighted MRI is sensitive to molecular motion and has been applied to the diagnosis of stroke. Our intention was to investigate its usefulness in patients with brain tumor and, in particular, in the perilesional edema. METHODS: We performed MRI of the brain, including diffusion-weighted imaging and mapping of the apparent diffusion coefficient (ADC), in 16 patients with brain tumors (glioblastomas, low-grade gliomas and metastases). ADC values were determined by the use of regions of interest positioned in areas of high signal intensities as seen on T2-weighted images and ADC maps. Measurements were taken in the tumor itself, in the area of perilesional edema and in the healthy contralateral brain. RESULTS: ADC mapping showed higher values of peritumoral edema in patients with glioblastoma (1.75 x 10(-3)mm(2)/s) and metastatic lesions (1.61 x 10(-3)mm(2)/s) compared with those who had low-grade glioma (1.40 x10(-3)mm(2)/s). The higher ADC values in the peritumoral zone were associated with lower ADC values in the tumor itself. CONCLUSIONS: The higher ADC values in the more malignant tumors probably reflect vasogenic edema, thereby allowing their differentiation from other lesions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work, as it was originally planned, was the arranging of an apparatus whereby electrical resistivity measurements could be made on powder compacts. It was also to include measurements on a series of copper-nickel compacts both before and after sintering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Lymph node staging of bladder or prostate cancer using conventional imaging is limited. Newer approaches such as ultrasmall superparamagnetic particles of iron oxide (USPIO) and diffusion-weighted magnetic resonance imaging (DW-MRI) have inconsistent diagnostic accuracy and are difficult to interpret. OBJECTIVE: To assess whether combined USPIO and DW-MRI (USPIO-DW-MRI) improves staging of normal-sized lymph nodes in bladder and/or prostate cancer patients. DESIGN, SETTING, AND PARTICIPANTS: Twenty-one consecutive patients with bladder and/or prostate cancer were enrolled between May and October 2008. One patient was excluded secondary to bone metastases detected on DW-MRI with subsequent abstention from surgery. INTERVENTION: Patients preoperatively underwent 3-T MRI before and after administration of lymphotropic USPIO using conventional MRI sequences combined with DW-MRI. Surgery consisted of extended pelvic lymphadenectomy and resection of primary tumors. MEASUREMENTS: Diagnostic accuracies of the new combined USPIO-DW-MRI approach compared with the "classic" reading method evaluating USPIO images without and with DW-MRI versus histopathology were evaluated. Duration of the two reading methods was noted for each patient. RESULTS AND LIMITATIONS: Diagnostic accuracy (90% per patient or per pelvic side) was comparable for the classic and the USPIO-DW-MRI reading method, while time of analysis with 80 min (range 45-180 min) for the classic and 13 min (range 5-90 min) for the USPIO-DW-MRI method was significantly shorter (p<0.0001). Interobserver agreement (three blinded readers) was high with a kappa value of 0.75 and 0.84, respectively. Histopathological analysis showed metastases in 26 of 802 analyzed lymph nodes (3.2%). Of these, 24 nodes (92%) were correctly diagnosed as positive on USPIO-DW-MRI. In two patients, one micrometastasis each (1.0x0.2 mm; 0.7x0.4 mm) was missed in all imaging studies. CONCLUSIONS: USPIO-DW-MRI is a fast and accurate method for detecting pelvic lymph node metastases, even in normal-sized nodes of bladder or prostate cancer patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative meta-analyses of randomized clinical trials investigating the specific therapeutic efficacy of homeopathic remedies yielded statistically significant differences compared to placebo. Since the remedies used contained mostly only very low concentrations of pharmacologically active compounds, these effects cannot be accounted for within the framework of current pharmacology. Theories to explain clinical effects of homeopathic remedies are partially based upon changes in diluent structure. To investigate the latter, we measured for the first time high-field (600/500 MHz) 1H T1 and T2 nuclear magnetic resonance relaxation times of H2O in homeopathic preparations with concurrent contamination control by inductively coupled plasma mass spectrometry (ICP-MS). Homeopathic preparations of quartz (10c–30c, n = 21, corresponding to iterative dilutions of 100−10–100−30), sulfur (13x–30x, n = 18, 10−13–10−30), and copper sulfate (11c–30c, n = 20, 100−11–100−30) were compared to n = 10 independent controls each (analogously agitated dilution medium) in randomized and blinded experiments. In none of the samples, the concentration of any element analyzed by ICP-MS exceeded 10 ppb. In the first measurement series (600 MHz), there was a significant increase in T1 for all samples as a function of time, and there were no significant differences between homeopathic potencies and controls. In the second measurement series (500 MHz) 1 year after preparation, we observed statistically significant increased T1 relaxation times for homeopathic sulfur preparations compared to controls. Fifteen out of 18 correlations between sample triplicates were higher for controls than for homeopathic preparations. No conclusive explanation for these phenomena can be given at present. Possible hypotheses involve differential leaching from the measurement vessel walls or a change in water molecule dynamics, i.e., in rotational correlation time and/or diffusion. Homeopathic preparations thus may exhibit specific physicochemical properties that need to be determined in detail in future investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Conventional cross-sectional imaging with computed tomography and magnetic resonance imaging (MRI) has limited accuracy for lymph node (LN) staging in bladder and prostate cancer patients. Objective To prospectively assess the diagnostic accuracy of combined ultrasmall superparamagnetic particles of iron oxide (USPIO) MRI and diffusion-weighted (DW) MRI in staging of normal-sized pelvic LNs in bladder and/or prostate cancer patients. Design, setting, and participants Examinations with 3-Tesla MRI 24–36 h after administration of USPIO using conventional MRI sequences combined with DW-MRI (USPIO-DW-MRI) were performed in 75 patients with clinically localised bladder and/or prostate cancer staged previously as N0 by conventional cross-sectional imaging. Combined USPIO-DW-MRI findings were analysed by three independent readers and correlated with histopathologic LN findings after extended pelvic LN dissection (PLND) and resection of primary tumours. Outcome measurements and statistical analysis Sensitivity and specificity for LN status of combined USPIO-DW-MRI versus histopathologic findings were evaluated per patient (primary end point) and per pelvic side (secondary end point). Time required for combined USPIO-DW-MRI reading was assessed. Results and limitations At histopathologic analysis, 2993 LNs (median: 39 LNs; range: 17–68 LNs per patient) with 54 LN metastases (1.8%) were found in 20 of 75 (27%) patients. Per-patient sensitivity and specificity for detection of LN metastases by the three readers ranged from 65% to 75% and 93% to 96%, respectively; sensitivity and specificity per pelvic side ranged from 58% to 67% and 94% to 97%, respectively. Median reading time for the combined USPIO-DW-MRI images was 9 min (range: 3–26 min). A potential limitation is the absence of a node-to-node correlation of combined USPIO-DW-MRI and histopathologic analysis. Conclusions Combined USPIO-DW-MRI improves detection of metastases in normal-sized pelvic LNs of bladder and/or prostate cancer patients in a short reading time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic resonance imaging, with its exquisite soft tissue contrast, is an ideal modality for investigating spinal cord pathology. While conventional MRI techniques are very sensitive for spinal cord pathology, their specificity is somewhat limited. Diffusion MRI is an advanced technique which is a very sensitive and specific indicator of the integrity of white matter tracts. Diffusion imaging has been shown to detect early ischemic changes in white matter, while conventional imaging demonstrates no change. By acquiring the complete apparent diffusion tensor (ADT), tissue diffusion properties can be expressed in terms of quantitative and rotationally invariant parameters. ^ Systematic study of SCI in vivo requires controlled animal models such as the popular rat model. To date, studies of spinal cord using ADT imaging have been performed exclusively in fixed, excised spinal cords, introducing inevitable artifacts and losing the benefits of MRI's noninvasive nature. In vivo imaging reflects the actual in vivo tissue properties, and allows each animal to be imaged at multiple time points, greatly reducing the number of animals required to achieve statistical significance. Because the spinal cord is very small, the available signal-to-noise ratio (SNR) is very low. Prior spin-echo based ADT studies of rat spinal cord have relied on high magnetic field strengths and long imaging times—on the order of 10 hours—for adequate SNR. Such long imaging times are incompatible with in vivo imaging, and are not relevant for imaging the early phases following SCI. Echo planar imaging (EPI) is one of the fastest imaging methods, and is popular for diffusion imaging. However, EPI further lowers the image SNR, and is very sensitive to small imperfections in the magnetic field, such as those introduced by the bony spine. Additionally, The small field-of-view (FOV) needed for spinal cord imaging requires large imaging gradients which generate EPI artifacts. The addition of diffusion gradients introduces yet further artifacts. ^ This work develops a method for rapid EPI-based in vivo diffusion imaging of rat spinal cord. The method involves improving the SNR using an implantable coil; reducing magnetic field inhomogeneities by means of an autoshim, and correcting EPI artifacts by post-processing. New EPI artifacts due to diffusion gradients described, and post-processing correction techniques are developed. ^ These techniques were used to obtain rotationally invariant diffusion parameters from 9 animals in vivo, and were validated using the gold-standard, but slow, spinecho based diffusion sequence. These are the first reported measurements of the ADT in spinal cord in vivo . ^ Many of the techniques described are equally applicable toward imaging of human spinal cord. We anticipate that these techniques will aid in evaluating and optimizing potential therapies, and will lead to improved patient care. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since no single experimental or modeling technique provides data that allow a description of transport processes in clays and clay minerals at all relevant scales, several complementary approaches have to be combined to understand and explain the interplay between transport relevant phenomena. In this paper molecular dynamics simulations (MD) were used to investigate the mobility of water in the interlayer of montmorillonite (Mt), and to estimate the influence of mineral surfaces and interlayer ions on the water diffusion. Random Walk (RW) simulations based on a simplified representation of pore space in Mt were used to estimate and understand the effect of the arrangement of Mt particles on the meso- to macroscopic diffusivity of water. These theoretical calculations were complemented with quasielastic neutron scattering (QENS) measurements of aqueous diffusion in Mt with two pseudo-layers of water performed at four significantly different energy resolutions (i.e. observation times). The size of the interlayer and the size of Mt particles are two characteristic dimensions which determine the time dependent behavior of water diffusion in Mt. MD simulations show that at very short time scales water dynamics has the characteristic features of an oscillatory motion in the cage formed by neighbors in the first coordination shell. At longer time scales, the interaction of water with the surface determines the water dynamics, and the effect of confinement on the overall water mobility within the interlayer becomes evident. At time scales corresponding to an average water displacement equivalent to the average size of Mt particles, the effects of tortuosity are observed in the meso- to macroscopic pore scale simulations. Consistent with the picture obtained in the simulations, the QENS data can be described using a (local) 3D diffusion at short observation times, whereas at sufficiently long observation times a 2D diffusive motion is clearly observed. The effects of tortuosity measured in macroscopic tracer diffusion experiments are in qualitative agreement with RW simulations. By using experimental data to calibrate molecular and mesoscopic theoretical models, a consistent description of water mobility in clay minerals from the molecular to the macroscopic scale can be achieved. In turn, simulations help in choosing optimal conditions for the experimental measurements and the data interpretation. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE To investigate if image registration of diffusion tensor imaging (DTI) allows omitting respiratory triggering for both transplanted and native kidneys MATERIALS AND METHODS: Nine kidney transplant recipients and eight healthy volunteers underwent renal DTI on a 3T scanner with and without respiratory triggering. DTI images were registered using a multimodal nonrigid registration algorithm. Apparent diffusion coefficient (ADC), the contribution of perfusion (FP ), and the fractional anisotropy (FA) were determined. Relative root mean square errors (RMSE) of the fitting and the standard deviations of the derived parameters within the regions of interest (SDROI ) were evaluated as quality criteria. RESULTS Registration significantly reduced RMSE in all DTI-derived parameters of triggered and nontriggered measurements in cortex and medulla of both transplanted and native kidneys (P < 0.05 for all). In addition, SDROI values were lower with registration for all 16 parameters in transplanted kidneys (14 of 16 SDROI values were significantly reduced, P < 0.04) and for 15 of 16 parameters in native kidneys (9 of 16 SDROI values were significantly reduced, P < 0.05). Comparing triggered versus nontriggered DTI in transplanted kidneys revealed no significant difference for RMSE (P > 0.14) and for SDROI (P > 0.13) of all parameters. In contrast, in native kidneys relative RMSE from triggered scans were significantly lower than those from nontriggered scans (P < 0.02), while SDROI was slightly higher in triggered compared to nontriggered measurements in 15 out of 16 comparisons (significantly for two, P < 0.05). CONCLUSION Registration improves the quality of DTI in native and transplanted kidneys. Diffusion parameters in renal allografts can be measured without respiratory triggering. In native kidneys, respiratory triggering appears advantageous. J. Magn. Reson. Imaging 2016.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The European Project for Ice Coring in Antarctica (EPICA) focuses on the drilling of two deep ice cores, the first at Dome C and the second at Kohnen station (75°00' S, 0°04' E) in Dronning Maud Land (DML). This paper deals with stable-isotope records from ice cores drilled in DML. In the first season, the deep EPICA DML core reached a depth of 450 m, recovering ice approximately 7000 years old. Generally, the d18O record indicates a stable Holocene climate and shows low variability. However, during the last 4000 years (based on a preliminary time-scale) the d18O values decrease continuously by about 0.6%, and the deuterium excess values increase by about 0.5%. The correlation between d18O and the deuterium excess d is investigated for a 50m long core section and the near-surface snow. High-pass filtered profiles are positively correlated, whereas the correlation between low-pass filtered profiles is negative. A post-depositional effect due to diffusion processes can be seen in a sub-annually resolved profile from snow-pit samples. Changes in the seasonality of the evolution of the snow cover and the consequences for stable-isotope content are demonstrated with data from ice core B31.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the relationship between aging, physical changes and the results of non-destructive testing of plywood. 176 pieces of plywood were tested to analyze their actual and estimated density using non-destructive methods (screw withdrawal force and ultrasound wave velocity) during a laboratory aging test. From the results of statistical analysis it can be concluded that there is a strong relationship between the non-destructive measurements carried out, and the decline in the physical properties of the panels due to aging. The authors propose several models to estimate board density. The best results are obtained with ultrasound. A reliable prediction of the degree of deterioration (aging) of board is presented. Breeder blanket materials have to produce tritium from lithium while fulfilling several strict conditions. In particular, when dealing with materials to be applied in fusion reactors, one of the key questions is the study of light ions retention, which can be produced by transmutation reactions and/or introduced by interaction with the plasma. In ceramic breeders the understanding of the hydrogen isotopes behaviour and specially the diffusion of tritium to the surface is crucial. Moreover the evolution of the microstructure during irradiation with energetic ions, neutrons and electrons is complex because of the interaction of a high number of processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-resolved reflectance is proposed and effectively used for the nondestructive measurement of the optical properties in apples. The technique is based on the detection of the temporal dispersion of a short laser pulse injected into the probed medium. The time-distribution of re-emitted photons interpreted with a solution of the Diffusion equation yields the mean values of the absorption and reduced scattering coefficients of the medium. The proposed technique proved valuable for the measurement of the absorption and scattering spectra of different varieties of apples. No major variations were observed in the experimental data when the fruit was peeled, proving that the measured optical properties are referred to the pulp. The depth of probed volume was determined to be about 2 cm. Finally, the technique proved capable to follow the change in chlorophyll absorption during storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-resolved reflectance is proposed and effectively used for the nondestructive measurement of the optical properties in apples. The technique is based on the detection of the temporal dispersion of a short laser pulse injected into the probed medium. The time-distribution of re-emitted photons interpreted with a solution of the Diffusion equation yields the mean values of the absorption and reduced scattering coefficients of the medium. The proposed technique proved valuable for the measurement of the absorption and scattering spectra of different varieties of apples. No major variations were observed in the experimental data when the fruit was peeled, proving that the measured optical properties are referred to the pulp. The depth of probed volume was determined to be about 2 cm. Finally, the technique proved capable to follow the change in chlorophyll absorption during storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report single-molecule folding studies of a small, single-domain protein, chymotrypsin inhibitor 2 (CI2). CI2 is an excellent model system for protein folding studies and has been extensively studied, both experimentally (at the ensemble level) and theoretically. Conformationally assisted ligation methodology was used to synthesize the proteins and site-specifically label them with donor and acceptor dyes. Folded and denatured subpopulations were observed by fluorescence resonance energy transfer (FRET) measurements on freely diffusing single protein molecules. Properties of these subpopulations were directly monitored as a function of guanidinium chloride concentration. It is shown that new information about different aspects of the protein folding reaction can be extracted from such subpopulation properties. Shifts in the mean transfer efficiencies are discussed, FRET efficiency distributions are translated into potentials, and denaturation curves are directly plotted from the areas of the FRET peaks. Changes in stability caused by mutation also are measured by comparing pseudo wild-type CI2 with a destabilized mutant (K17G). Current limitations and future possibilities and prospects for single-pair FRET protein folding investigations are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development plays an important part in shaping adult morphology and morphological disparity, yet its influence on evolutionary processes is seldom explored because of a lack of preservation of ontogenetic stages in the fossil record. By preserving their entire ontogenetic history within their test, and with the advent of high-resolution imaging techniques, planktic foraminifera allow us to investigate the influence of developmental constraints on disparity. Using Synchrotron radiation X-ray tomographic microscopy (SRXTM), we reconstruct the ontogenetic progression of seven species across several of the major morphotypic groups of planktic foraminifera, including morphotypes of a species exhibiting high phenotypic plasticity and closely related pseudo-cryptic sister-taxa. We show differences in growth patterns between the globigerinid species, which appear more tightly regulated within the framework of isometry from the neanic stage, and the globorotaliid species, whose adult stages present allometric trends. Morphological change through ontogeny results in a change in surface area to volume ratios. Different metabolic processes therefore dominate at different stages of ontogeny, changing the vulnerability of the organism to environmental influences over growth, from factors affecting diffusion rates in the juvenile to those affecting energy supply in the adult. These findings identify some of the parameters within which evolutionary mechanisms have to act.