961 resultados para Diffuse reflectance
Resumo:
Les interactions entre des complexes de platine (II) ou de palladium (II) ont une grande influence sur une grande gamme de propriétés chimiques et physiques. Ces propriétés peuvent être étudiées par plusieurs méthodes spectroscopiques comme la spectroscopie Raman, d’absorption, d’émission et de réflectivité diffuse. L’empilement de molécules a un effet important sur les propriétés spectroscopiques de plusieurs composés des éléments de transition. La spectroscopie est très utile pour comprendre les effets intermoléculaires majeurs de plusieurs composés inorganiques. Les complexes plan-carré de platine(II) et de palladium(II) sont très intéressants à cause de leur grande quantité d’effets intermoléculaires et intramoléculaires. Des mesures avec des variations de pression (entre 1 bar et 40 kbar) et de température (entre 80 K et 300 K) ont été effectuées sur ces complexes. La structure à l’état fondamental des composés de platine(II) et de palladium(II) a un effet important sur la spectroscopie de luminescence. Des complexes avec des donneurs axiaux mènent à un effet de déplacement du maximum d’émission vers de plus basses énergies avec l’augmentation de pression. Des complexes similaires sans composante axiale ont un maximum d’émission qui se déplace vers des plus hautes énergies. Ces effets sont explorés à l’aide de plusieurs composés incluant une série de complexes pinceur qui ont démontré des déplacements entre -1 cm-1/kbar et -30 cm-1/kbar. Le changement du type d’émission causé par un changement de pression ou de température est aussi observable. Un complexe de platine(II) montre un changement d’une transition centrée sur le ligand à pression ambiante à une transition de type transfert de charge à plus haute pression. La combinaison de l’information cristallographique et spectroscopique donne de l’information quantitative sur les variations de la structure et des niveaux électroniques de plusieurs complexes.
Resumo:
A set of six new polystyrene anchored metal complexes have been synthesized by the reaction of the metal salt with the polystyrene anchored Schiff base of vanillin. These complexes were characterized by elemental analyses, Fourier transform infrared spectroscopy, diffuse reflectance studies, thermal studies, and magnetic susceptibility measurements. The elemental analyses suggest a metal : ligand ratio of 1 : 2. The ligand is unidentate and coordinates through the azomethine nitrogen. The Mn(II), Fe(III), Co(II), Ni(II), and Cu(II) complexes are all paramagnetic while Zn(II) is diamagnetic. The Cu(II) complex is assigned a square planar structure, while Zn(II) is assigned a tetrahedral structure and Mn(II), Fe(III), Co(II), and Ni(II) are all assigned octahedral geometry. The thermal analyses were done on the ligand and its complexes to reveal their stability. Further, the application of the Schiff base as a chelating resin in ion removal studies was investigated. The polystyrene anchored Schiff base gave 96% efficiency in the removal of Ni(II) from a 20-ppm solution in 15 min, without any interference from ions such as Mn(II), Co(II), Fe(III), Cu(II), Zn(II), U(VI), Na , K , NH4 , Ca2 , Cl , Br , NO3 , NO2 ,and CH3CO2 . The major advantage is that the removal is achieved without altering the pH.
Resumo:
This paper reports the synthesis of a series of six new polystyrene anchored metal complexes of Co(II), Fe(III), Ni(II), Cu(II), Zn(II), and dioxouanium(VI) using the polystyrene anchored Schiff base of 2-nitrobenzaldehyde and the corresponding metal salts. The metal salts used were anhydrous FeCl3, CoCl2 Æ 6H2O, Ni(CH3COO)2 Æ 4H2O, Cu(CH3- COO)2 Æ H2O, Zn(CH3COO)2 Æ 2H2O, and UO2(CH3COO) Æ 2H2O. Physico chemical characterizations have been made from diffuse reflectance and vibrational spectra, elemental analysis, magnetic measurements, and TG studies. The elemental analysis suggest a 1:2 metal:ligand ratio when the complexation has carried out at 70 C for about 12 h reflux. The ligand is monodentate and coordinates through the azomethine nitrogen. The Fe(III), Co(II), Ni(II), and Cu(II) complexes are all paramagnetic whereas Zn(II) and U(VI) are diamagnetic. Zn(II) is assigned a tetrahedral structure, Cu(II) and Co(II) are assigned a square planar structure and Fe(III), Ni(II), and U(VI) are all assigned an octahedral structure. The polystyrene anchored ligand has been developed as an excellent reagent for the removal of Cu(II). Optimum conditions have been developed for the removal of metal ion from solutions by studying the effect of change of concentration of metal ion, ligand, effect of pH, time of reflux, and interference effect of other ions. It was found that within a span of 20 min it is possible to remove 90% of the metal ion from a 30 ppm metal ion solution in the pH range 4–5.5.
Resumo:
Stable, OH free zinc oxide (ZnO) nanoparticles were synthesized by hydrothermal method by varying the growth temperature and concentration of the precursors. The formation of ZnO nanoparticles were confirmed by x-ray diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) studies. The average particle size have been found to be about 7-24 nm and the compositional analysis is done with inductively coupled plasma atomic emission spectroscopy (ICP-AES). Diffuse reflectance spectroscopy (DRS) results shows that the band gap of ZnO nanoparticles is blue shifted with decrease in particle size. Photoluminescence properties of ZnO nanoparticles at room temperature were studied and the green photoluminescent emission from ZnO nanoparticles can originate from the oxygen vacancy or ZnO interstitial related defects.
Resumo:
Two new complexes, [MII(L)(Cl)(H2O)2]·H2O (where M=Ni or Ru and L = heterocyclic Schiff base, 3- hydroxyquinoxaline-2-carboxalidene-4-aminoantipyrine), have been synthesized and characterized by elemental analysis, FT-IR, UV–vis diffuse reflectance spectroscopy, FAB-MASS, TG–DTA, AAS, cyclic voltammetry, conductance and magnetic susceptibility measurements. The complexes have a distorted octahedral structure andwere found to be effective catalysts for the hydrogenation of benzene. The influence of several reaction parameters such as reaction time, temperature, hydrogen pressure, concentration of the catalyst and concentration of benzenewas tested. A turnover frequency of 5372 h−1 has been found in the case of ruthenium complex for the reduction of benzene at 80 ◦C with 3.64×10−6 mol catalyst, 0.34 mol benzene and at a hydrogen pressure of 50 bar. In the case of the nickel complex, a turnover frequency of 1718 h−1 has been found for the same reaction with 3.95×10−6 mol catalyst under similar experimental conditions. The nickel complex shows more selectivity for the formation of cyclohexene while the ruthenium complex is more selective for the formation of cyclohexane
Resumo:
Copper(II) complexes of two biologically important ligands, viz., embelin (2,5-dihydroxy-3-undecyl-2,5-cyclohexadien 1,4-dione) and 2-aminobenzimidazole were entrapped in the cages of zeolite Y by the flexible ligand method. The capability of these compounds in catalyzing the reduction of oxygen (industrially known as deoxo reaction) was explored and the results indicate an enhancement of the catalytic properties from that of the simple copper ion exchanged zeolite. These point to the ability of the ligands in enhancing the oxygen binding capability of the metal ion. Elemental analyses, Fourier transform infrared (FTIR), diffuse reflectance and EPR spectral studies, magnetic susceptibility measurements, TG, surface area analyses and powder X-ray diffraction studies were used in understanding the presence, composition and structure of the complexes inside the cages. The study also reveals the increased thermal and mechanical stability of the complexes as a result of encapsulation.
Resumo:
Two novel polystyrene-supported Schiff bases, PSOPD and PSHQAD, were synthesized. A polymerbound aldehyde was condensed with o-phenylenediamine to prepare the Schiff base PSOPD, and a polymer-bound amine was condensed with 3-hydroxyquinoxaline-2-carboxaldehyde to prepare the Schiff base PSHQAD. This article addresses the study of cobalt (II), nickel (II), and copper (II) complexes of these polymer-bound Schiff bases. All the complexes were characterized, and the probable geometry was suggested using elemental analysis, diffuse reflectance ultraviolet, Fourier transform infrared spectroscopy, thermal studies, surface area studies, and magnetic measurements.
Resumo:
Dental caries persists to be the most predominant oral disease in spite of remarkable progress made during the past half- century to reduce its prevalence. Early diagnosis of carious lesions is an important factor in the prevention and management of dental caries. Conventional procedures for caries detection involve visual-tactile and radiographic examination, which is considered as “gold standard”. These techniques are subjective and are unable to detect the lesions until they are well advanced and involve about one-third of the thickness of enamel. Therefore, all these factors necessitate the need for the development of new techniques for early diagnosis of carious lesions. Researchers have been trying to develop various instruments based on optical spectroscopic techniques for detection of dental caries during the last two decades. These optical spectroscopic techniques facilitate noninvasive and real-time tissue characterization with reduced radiation exposure to patient, thereby improving the management of dental caries. Nonetheless, a costeffective optical system with adequate sensitivity and specificity for clinical use is still not realized and development of such a system is a challenging task.Two key techniques based on the optical properties of dental hard tissues are discussed in this current thesis, namely laser-induced fluorescence (LIF) and diffuse reflectance (DR) spectroscopy for detection of tooth caries and demineralization. The work described in this thesis is mainly of applied nature, focusing on the analysis of data from in vitro tooth samples and extending these results to diagnose dental caries in a clinical environment. The work mainly aims to improve and contribute to the contemporary research on fluorescence and diffuse reflectance for discriminating different stages of carious lesions. Towards this, a portable and compact laser-induced fluorescence and reflectance spectroscopic system (LIFRS) was developed for point monitoring of fluorescence and diffuse reflectance spectra from tooth samples. The LIFRS system uses either a 337 nm nitrogen laser or a 404 nm diode laser for the excitation of tooth autofluorescence and a white light source (tungsten halogen lamp) for measuring diffuse reflectance.Extensive in vitro studies were carried out on extracted tooth samples to test the applicability of LIFRS system for detecting dental caries, before being tested in a clinical environment. Both LIF and DR studies were performed for diagnosis of dental caries, but special emphasis was given for early detection and also to discriminate between different stages of carious lesions. Further the potential of LIFRS system in detecting demineralization and remineralization were also assessed.In the clinical trial on 105 patients, fluorescence reference standard (FRS) criteria was developed based on LIF spectral ratios (F500/F635 and F500/F680) to discriminate different stages of caries and for early detection of dental caries. The FRS ratio scatter plots developed showed better sensitivity and specificity as compared to clinical and radiographic examination, and the results were validated with the blindtests. Moreover, the LIF spectra were analyzed by curve-fitting using Gaussian spectral functions and the derived curve-fitted parameters such as peak position, Gaussian curve area, amplitude and width were found to be useful for distinguishing different stages of caries. In DR studies, a novel method was established based on DR ratios (R500/R700, R600/R700 and R650/R700) to detect dental caries with improved accuracy. Further the diagnostic accuracy of LIFRS system was evaluated in terms of sensitivity, specificity and area under the ROC curve. On the basis of these results, the LIFRS system was found useful as a valuable adjunct to the clinicians for detecting carious lesions.
Resumo:
Chromia loaded sulfated titania has been synthesized via sol–gel route with different chromia loadings. These catalysts are characterized using conventional techniques such as XRD analysis, FTIR analysis, surface area and pore volume measurements, EDX, SEM and UV–Vis diffuse reflectance spectral analysis. Acidity is measured using spectrophotometric monitoring of adsorption of perylene, thermogravimetric desorption of 2,6-dimethylpyridine and temperature programmed desorption of ammonia. Activity studies are done in the liquid phase. It has been concluded that Lewis acid sites are responsible for the benzylation of arenes with benzyl chloride.
Resumo:
A series of rare-earth neodymia supported vanadium oxide catalysts with various V205 loadings ranging from 3 to 15 wt.% were prepared by the wet impregnation method using ammonium metavanadate as the vanadium precursor. The nature of vanadia species formed on the support surface is characterized hy a series of different physicochemical techniques like X-ray diffraction (XRD). Fourier transform infrared spectroscopy (FTIR). BET surface area, diffuse reflectance UV-vis spectroscopy (DR UV-vis), thermal analysis (TG-DTG/DTA) and SEM. The acidity of the prepared systems were verified by the stepwise temperature programmed desorprion of ammonia (NH3-TPD) and found that the total acidity gets increased with the percentage of vanadia loading. XRD and FT1R results shows the presence of surface dispersed vanadyl species at lower loadings and the formation of higher vanadate species as the percentage composition of vanadia is increased above 9 wt.%. The low surface area of the support. calcination temperature and the percentage of vanadia loading are found to influence the formation of higher vanadia species. The catalytic activity of the V205-Nd203 catalysts was probed in the liquid phase hydroxylation of phenol and the result show that the present catalysts are active at lower vanadia concentrations.
Resumo:
This thesis is divided in to 9 chapters and deals with the modification of TiO2 for various applications include photocatalysis, thermal reaction, photovoltaics and non-linear optics. Chapter 1 involves a brief introduction of the topic of study. An introduction to the applications of modified titania systems in various fields are discussed concisely. Scope and objectives of the present work are also discussed in this chapter. Chapter 2 explains the strategy adopted for the synthesis of metal, nonmetal co-doped TiO2 systems. Hydrothermal technique was employed for the preparation of the co-doped TiO2 system, where Ti[OCH(CH3)2]4, urea and metal nitrates were used as the sources for TiO2, N and metals respectively. In all the co-doped systems, urea to Ti[OCH(CH3)2]4 was taken in a 1:1 molar ratio and varied the concentration of metals. Five different co-doped catalytic systems and for each catalysts, three versions were prepared by varying the concentration of metals. A brief explanation of physico-chemical techniques used for the characterization of the material was also presented in this chapter. This includes X-ray Diffraction (XRD), Raman Spectroscopy, FTIR analysis, Thermo Gravimetric Analysis, Energy Dispersive X-ray Analysis (EDX), Scanning Electron Microscopy(SEM), UV-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS), Transmission Electron Microscopy (TEM), BET Surface Area Measurements and X-ray Photoelectron Spectroscopy (XPS). Chapter 3 contains the results and discussion of characterization techniques used for analyzing the prepared systems. Characterization is an inevitable part of materials research. Determination of physico-chemical properties of the prepared materials using suitable characterization techniques is very crucial to find its exact field of application. It is clear from the XRD pattern that photocatalytically active anatase phase dominates in the calcined samples with peaks at 2θ values around 25.4°, 38°, 48.1°, 55.2° and 62.7° corresponding to (101), (004), (200), (211) and (204) crystal planes (JCPDS 21-1272) respectively. But in the case of Pr-N-Ti sample, a new peak was observed at 2θ = 30.8° corresponding to the (121) plane of the polymorph brookite. There are no visible peaks corresponding to dopants, which may be due to their low concentration or it is an indication of the better dispersion of impurities in the TiO2. Crystallite size of the sample was calculated from Scherrer equation byusing full width at half maximum (FWHM) of the (101) peak of the anatase phase. Crystallite size of all the co-doped TiO2 was found to be lower than that of bare TiO2 which indicates that the doping of metal ions having higher ionic radius into the lattice of TiO2 causes some lattice distortion which suppress the growth of TiO2 nanoparticles. The structural identity of the prepared system obtained from XRD pattern is further confirmed by Raman spectra measurements. Anatase has six Raman active modes. Band gap of the co-doped system was calculated using Kubelka-Munk equation and that was found to be lower than pure TiO2. Stability of the prepared systems was understood from thermo gravimetric analysis. FT-IR was performed to understand the functional groups as well as to study the surface changes occurred during modification. EDX was used to determine the impurities present in the system. The EDX spectra of all the co-doped samples show signals directly related to the dopants. Spectra of all the co-doped systems contain O and Ti as the main components with low concentrations of doped elements. Morphologies of the prepared systems were obtained from SEM and TEM analysis. Average particle size of the systems was drawn from histogram data. Electronic structures of the samples were identified perfectly from XPS measurements. Chapter 4 describes the photocatalytic degradation of herbicides Atrazine and Metolachlor using metal, non-metal co-doped titania systems. The percentage of degradation was analyzed by HPLC technique. Parameters such as effect of different catalysts, effect of time, effect of catalysts amount and reusability studies were discussed. Chapter 5 deals with the photo-oxidation of some anthracene derivatives by co-doped catalytic systems. These anthracene derivatives come underthe category of polycyclic aromatic hydrocarbons (PAH). Due to the presence of stable benzene rings, most of the PAH show strong inhibition towards biological degradation and the common methods employed for their removal. According to environmental protection agency, most of the PAH are highly toxic in nature. TiO2 photochemistry has been extensively investigated as a method for the catalytic conversion of such organic compounds, highlighting the potential of thereof in the green chemistry. There are actually two methods for the removal of pollutants from the ecosystem. Complete mineralization is the one way to remove pollutants. Conversion of toxic compounds to another compound having toxicity less than the initial starting compound is the second way. Here in this chapter, we are concentrating on the second aspect. The catalysts used were Gd(1wt%)-N-Ti, Pd(1wt%)-N-Ti and Ag(1wt%)-N-Ti. Here we were very successfully converted all the PAH to anthraquinone, a compound having diverse applications in industrial as well as medical fields. Substitution of 10th position of desired PAH by phenyl ring reduces the feasibility of photo reaction and produced 9-hydroxy 9-phenyl anthrone (9H9PA) as an intermediate species. The products were separated and purified by column chromatography using 70:30 hexane/DCM mixtures as the mobile phase and the resultant products were characterized thoroughly by 1H NMR, IR spectroscopy and GCMS analysis. Chapter 6 elucidates the heterogeneous Suzuki coupling reaction by Cu/Pd bimetallic supported on TiO2. Sol-Gel followed by impregnation method was adopted for the synthesis of Cu/Pd-TiO2. The prepared system was characterized by XRD, TG-DTG, SEM, EDX, BET Surface area and XPS. The product was separated and purified by column chromatography using hexane as the mobile phase. Maximum isolated yield of biphenyl of around72% was obtained in DMF using Cu(2wt%)-Pd(4wt%)-Ti as the catalyst. In this reaction, effective solvent, base and catalyst were found to be DMF, K2CO3 and Cu(2wt%)-Pd(4wt%)-Ti respectively. Chapter 7 gives an idea about the photovoltaic (PV) applications of TiO2 based thin films. Due to energy crisis, the whole world is looking for a new sustainable energy source. Harnessing solar energy is one of the most promising ways to tackle this issue. The present dominant photovoltaic (PV) technologies are based on inorganic materials. But the high material, low power conversion efficiency and manufacturing cost limits its popularization. A lot of research has been conducted towards the development of low-cost PV technologies, of which organic photovoltaic (OPV) devices are one of the promising. Here two TiO2 thin films having different thickness were prepared by spin coating technique. The prepared films were characterized by XRD, AFM and conductivity measurements. The thickness of the films was measured by Stylus Profiler. This chapter mainly concentrated on the fabrication of an inverted hetero junction solar cell using conducting polymer MEH-PPV as photo active layer. Here TiO2 was used as the electron transport layer. Thin films of MEH-PPV were also prepared using spin coating technique. Two fullerene derivatives such as PCBM and ICBA were introduced into the device in order to improve the power conversion efficiency. Effective charge transfer between the conducting polymer and ICBA were understood from fluorescence quenching studies. The fabricated Inverted hetero junction exhibited maximum power conversion efficiency of 0.22% with ICBA as the acceptor molecule. Chapter 8 narrates the third order order nonlinear optical properties of bare and noble metal modified TiO2 thin films. Thin films were fabricatedby spray pyrolysis technique. Sol-Gel derived Ti[OCH(CH3)2]4 in CH3CH2OH/CH3COOH was used as the precursor for TiO2. The precursors used for Au, Ag and Pd were the aqueous solutions of HAuCl4, AgNO3 and Pd(NO3)2 respectively. The prepared films were characterized by XRD, SEM and EDX. The nonlinear optical properties of the prepared materials were investigated by Z-Scan technique comprising of Nd-YAG laser (532 nm,7 ns and10 Hz). The non-linear coefficients were obtained by fitting the experimental Z-Scan plot with the theoretical plots. Nonlinear absorption is a phenomenon defined as a nonlinear change (increase or decrease) in absorption with increasing of intensity. This can be mainly divided into two types: saturable absorption (SA) and reverse saturable absorption (RSA). Depending on the pump intensity and on the absorption cross- section at the excitation wavelength, most molecules show non- linear absorption. With increasing intensity, if the excited states show saturation owing to their long lifetimes, the transmission will show SA characteristics. Here absorption decreases with increase of intensity. If, however, the excited state has strong absorption compared with that of the ground state, the transmission will show RSA characteristics. Here in our work most of the materials show SA behavior and some materials exhibited RSA behavior. Both these properties purely depend on the nature of the materials and alignment of energy states within them. Both these SA and RSA have got immense applications in electronic devices. The important results obtained from various studies are presented in chapter 9.
Resumo:
Three ochre samples (A (orange-red in colour), B (red) and C (purple)) from Clearwell Caves, (Gloucestershire, UK) have been examined using an integrated analytical methodology based on the techniques of IR and diffuse reflectance UV-visible-NIR spectroscopy, X-ray diffraction, elemental analysis by ICP-AES and particle size analysis. It is shown that the chromophore in each case is haematite. The differences in colour may be accounted for by (i) different mineralogical and chemical composition in the case of the orange ochre, where hi,,her levels of dolomite and copper are seen and (ii) an unusual particle size distribution in the case of the purple ochre. When the purple ochre was ground to give the same particle size distribution as the red ochre then the colours of the two samples became indistinguishable. An analysis has now been completed of a range of ochre samples with colours from yellow to purple from the important site of Clearwell Caves. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We report the use of transition-metal-exchanged zeolites as media for the catalytic formation and encapsulation of both polyethyne and polypropyne, and computer modeling studies on the composites so formed. Alkyne gas was absorbed into the pores of zeolite Y (Faujasite) exchanged with transition-metal cations [Fe(II), Co(II), Cu(II), Ni(II), and Zn(II)]. Ni(II) and Zn(II) were found to be the most efficient for the production of poly-ynes. These cations were also found to be effective in polymer generation when exchanged in zeolites mordenite and beta. The resulting powdered samples were characterized by FTIR, Raman, diffuse reflectance electronic spectroscopy, TEM, and elemental analysis, revealing, nearly complete loading of the zeolite channels for the majority of the samples. Based on the experimental carbon content, we have derived the percentage of channel filling, and the proportion of the channels containing a single polymer chain for mordenite. Experimentally, the channels for Y are close to complete filling for polyethyne (PE) and polypropyne (PP), and this is also true for polyethyne in mordenite. Computer modeling studies using Cerius2 show that the channels of mordenite can only accept a single polymer chain of PP, in which case these channels are also completely filled.
Resumo:
Polycrystalline LiH was studied in situ using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy to investigate the effect water vapour has on the rate of production of the corrosion products, particularly LiOH. The reaction rate of the formation of surface LiOH was monitored by measurement of the hydroxyl (OH) band at 3676 cm(-1). The initial hydrolysis rate of LiH exposed to water vapour at 50% relative humidity was found to be almost two times faster than LiH exposed to water vapour at 2% relative humidity. The hydrolysis rate was shown to be initially very rapid followed by a much slower, almost linear rate. The change in hydrolysis rate was attributed to the formation of a coherent layer of LiOH on the LiH surface. Exposure to lower levels of water vapour appeared to result in the formation of a more coherent corrosion product, resulting in effective passivation of the surface to further attack from water. Crown Copyright (c) 2007 Published by Elsevier B.V. All rights reserved.
Resumo:
Three ochre samples (A (orange-red in colour), B (red) and C (purple)) from Clearwell Caves, (Gloucestershire, UK) have been examined using an integrated analytical methodology based on the techniques of IR and diffuse reflectance UV-visible-NIR spectroscopy, X-ray diffraction, elemental analysis by ICP-AES and particle size analysis. It is shown that the chromophore in each case is haematite. The differences in colour may be accounted for by (i) different mineralogical and chemical composition in the case of the orange ochre, where hi,,her levels of dolomite and copper are seen and (ii) an unusual particle size distribution in the case of the purple ochre. When the purple ochre was ground to give the same particle size distribution as the red ochre then the colours of the two samples became indistinguishable. An analysis has now been completed of a range of ochre samples with colours from yellow to purple from the important site of Clearwell Caves. (C) 2004 Elsevier B.V. All rights reserved.