954 resultados para Design problems
Resumo:
Most leadership and management researchers ignore one key design and estimation problem rendering parameter estimates uninterpretable: Endogeneity. We discuss the problem of endogeneity in depth and explain conditions that engender it using examples grounded in the leadership literature. We show how consistent causal estimates can be derived from the randomized experiment, where endogeneity is eliminated by experimental design. We then review the reasons why estimates may become biased (i.e., inconsistent) in non-experimental designs and present a number of useful remedies for examining causal relations with non-experimental data. We write in intuitive terms using nontechnical language to make this chapter accessible to a large audience.
Resumo:
Bridge approach settlement and the formation of the bump is a common problem in Iowa that draws upon considerable resources for maintenance and creates a negative perception in the minds of transportation users. This research study was undertaken to investigate bridge approach problems and develop new concepts for design, construction, and maintenance that will reduce this costly problem. As a result of the research described in this report, the following changes are suggested for implementation on a pilot test basis: • Use porous backfill behind the abutment and/or geocomposite drainage systems to improve drainage capacity and reduce erosion around the abutment. • On a pilot basis, connect the approach slab to the bridge abutment. Change the expansion joint at the bridge to a construction joint of 2 inch. Use a more effective joint sealing system at the CF joint. Change the abutment wall rebar from #5 to #7 for non-integral abutments. • For bridges with soft foundation or embankment soils, implement practices of better compaction, preloading, ground improvement, soil removal and replacement, or soil reinforcement that reduce time-dependent post construction settlements.
Resumo:
Bridge approach settlement and the formation of the bump is a common problem in Iowa that draws upon considerable resources for maintenance and creates a negative perception in the minds of transportation users. This research study was undertaken to investigate bridge approach problems and develop new concepts for design, construction, and maintenance that will reduce this costly problem. As a result of the research described in this report, the following changes are suggested for implementation on a pilot test basis: • Use porous backfill behind the abutment and/or geocomposite drainage systems to improve drainage capacity and reduce erosion around the abutment. • On a pilot basis, connect the approach slab to the bridge abutment. Change the expansion joint at the bridge to a construction joint of 2 inch. Use a more effective joint sealing system at the CF joint. Change the abutment wall rebar from #5 to #7 for non-integral abutments. • For bridges with soft foundation or embankment soils, implement practices of better compaction, preloading, ground improvement, soil removal and replacement, or soil reinforcement that reduce time-dependent post construction settlements.
Resumo:
To ensure that high-quality materials are used in concrete mixing, all materials delivered to the site should be inspected to ensure that they meet specification requirements. All materials should be delivered with the proper certifications, invoices, or bill of lading. These records should indicate when the shipment arrived, the amount and identification of material delivered, and the laboratory report certification number, invoice number, and ticket number.
Resumo:
Granular shoulders are an important element of the transportation system and are constantly subjected to performance problems due to wind- and water-induced erosion, rutting, edge drop-off, and slope irregularities. Such problems can directly affect drivers’ safety and often require regular maintenance. The present research study was undertaken to investigate the factors contributing to these performance problems and to propose new ideas to design and maintain granular shoulders while keeping ownership costs low. This report includes observations made during a field reconnaissance study, findings from an effort to stabilize the granular and subgrade layer at six shoulder test sections, and the results of a laboratory box study where a shoulder section overlying a soft foundation layer was simulated. Based on the research described in this report, the following changes are proposed to the construction and maintenance methods for granular shoulders: • A minimum CBR value for the granular and subgrade layer should be selected to alleviate edge drop-off and rutting formation. • For those constructing new shoulder sections, the design charts provided in this report can be used as a rapid guide based on an allowable rut depth. The charts can also be used to predict the behavior of existing shoulders. • In the case of existing shoulder sections overlying soft foundations, the use of geogrid or fly ash stabilization proved to be an effective technique for mitigating shoulder rutting.
Resumo:
BACKGROUND: Progress in perinatal medicine has made it possible to increase the survival of very or extremely low birthweight infants. Developmental outcomes of surviving preterm infants have been analysed at the paediatric, neurological, cognitive, and behavioural levels, and a series of perinatal and environmental risk factors have been identified. The threat to the child's survival and invasive medical procedures can be very traumatic for the parents. Few empirical reports have considered post-traumatic stress reactions of the parents as a possible variable affecting a child's outcome. Some studies have described sleeping and eating problems as related to prematurity; these problems are especially critical for the parents. OBJECTIVE: To examine the effects of post-traumatic reactions of the parents on sleeping and eating problems of the children. DESIGN: Fifty families with a premature infant (25-33 gestation weeks) and a control group of 25 families with a full term infant participated in the study. Perinatal risks were evaluated during the hospital stay. Mothers and fathers were interviewed when their children were 18 months old about the child's problems and filled in a perinatal post-traumatic stress disorder questionnaire (PPQ). RESULTS: The severity of the perinatal risks only partly predicts a child's problems. Independently of the perinatal risks, the intensity of the post-traumatic reactions of the parents is an important predictor of these problems. CONCLUSIONS: These findings suggest that the parental response to premature birth mediates the risks of later adverse outcomes. Preventive intervention should be promoted.
Resumo:
One of the main questions to solve when analysing geographically added information consists of the design of territorial units adjusted to the objectives of the study. This is related with the reduction of the effects of the Modificable Areal Unit Problem (MAUP). In this paper an optimisation model to solve regionalisation problems is proposed. This model seeks to reduce disadvantages found in previous works about automated regionalisation tools
Resumo:
One of the main questions to solve when analysing geographically added information consists of the design of territorial units adjusted to the objectives of the study. This is related with the reduction of the effects of the Modificable Areal Unit Problem (MAUP). In this paper an optimisation model to solve regionalisation problems is proposed. This model seeks to reduce disadvantages found in previous works about automated regionalisation tools
Resumo:
A common way to model multiclass classification problems is by means of Error-Correcting Output Codes (ECOCs). Given a multiclass problem, the ECOC technique designs a code word for each class, where each position of the code identifies the membership of the class for a given binary problem. A classification decision is obtained by assigning the label of the class with the closest code. One of the main requirements of the ECOC design is that the base classifier is capable of splitting each subgroup of classes from each binary problem. However, we cannot guarantee that a linear classifier model convex regions. Furthermore, nonlinear classifiers also fail to manage some type of surfaces. In this paper, we present a novel strategy to model multiclass classification problems using subclass information in the ECOC framework. Complex problems are solved by splitting the original set of classes into subclasses and embedding the binary problems in a problem-dependent ECOC design. Experimental results show that the proposed splitting procedure yields a better performance when the class overlap or the distribution of the training objects conceal the decision boundaries for the base classifier. The results are even more significant when one has a sufficiently large training size.
Resumo:
This project developed an automatic conversion software tool that takes input a from an Iowa Department of Transportation (DOT) MicroStation three-dimensional (3D) design file and converts it into a form that can be used by the University of Iowa’s National Advanced Driving Simulator (NADS) MiniSim. Once imported into the simulator, the new roadway has the identical geometric design features as in the Iowa DOT design file. The base roadway appears as a wireframe in the simulator software. Through additional software tools, textures and shading can be applied to the roadway surface and surrounding terrain to produce the visual appearance of an actual road. This tool enables Iowa DOT engineers to work with the universities to create drivable versions of prospective roadway designs. By driving the designs in the simulator, problems can be identified early in the design process. The simulated drives can also be used for public outreach and human factors driving research.
Resumo:
In the United States many bridge structures have been designed without consideration for their unique construction problems. Many problems could have been avoided if construction knowledge and experience was utilized in the design process. A systematic process is needed to create and capture construction knowledge for use in the design process. This study was conducted to develop a system to capture construction considerations from field people and incorporate it into a knowledge-base for use by the bridge designers. This report presents the results of this study. As a part of this study a microcomputer-based constructability system has been developed. The system is a user-friendly microcomputer database which codifies construction knowledge, provides easy access to specifications, and provides simple design computation checks for the designer. A structure for the final database was developed and used in the prototype system. A process for collecting, developing and maintaining the database is presented and explained. The study involved a constructability survey, interviews with designers and constructors, and visits to construction sites to collect constuctability concepts. The report describes the development of the constructability system and addresses the future needs for the Iowa Department of Transportation to make the system operational. A user's manual for the system is included along with the report.
Resumo:
The need for upgrading a large number of understrength bridges in the United States has been well documented in the literature. This manual presents two methods for strengthening continuous-span composite bridges: post-tensioning of the positive moment regions of the bridge stringers and the addition of superimposed trusses at the piers. The use of these two systems is an efficient method of reducing flexural overstresses in undercapacity bridges. Before strengthening a given bridge however, other deficiencies (inadequate shear connection, fatigue problems, extensive corrosion) should be addressed. Since continuous-span composite bridges are indeterminant structures, there is longitudinal and transverse distribution of the strengthening axial forces and moments. This manual basically provides the engineer with a procedure for determining the distribution of strengthening forces and moments throughout the bridge. As a result of the longitudinal and transverse force distribution, the design methodology presented in this manual for continuous-span composite bridges is extremely complex. To simplify the procedure, a spreadsheet has been developed for use by practicing engineers. This design aid greatly simplifies the design of a strengthening system for a given bridge in that it eliminates numerous tedious hand calculations, computes the required force and moment fractions, and performs the necessary iterations for determining the required strengthening forces. The force and moment distribution fraction formulas developed in this manual are primarily for the Iowa DOT V12 and V14 three-span four-stringer bridges. These formulas may be used on other bridges if they are within the limits stated in this manual. Use of the distribution fraction formulas for bridges not within the stated limits is not recommended.
Resumo:
This report is formatted to independently present four individual investigations related to similar web gap fatigue problems. Multiple steel girder bridges commonly exhibit fatigue cracking due to out-of-plane displacement of the web near the diaphragm connections. This fatigue-prone web gap area is typically located in negative moment regions of the girders where the diaphragm stiffener is not attached to the top flange. In the past, the Iowa Department of Transportation has attempted to stop fatigue crack propagation in these steel girder bridges by drilling holes at the crack tips. Other nondestructive retrofits have been tried; in a particular case on a two-girder bridge with floor beams, angles were bolted between the stiffener and top flange. The bolted angle retrofit has failed in the past and may not be a viable solution for diaphragm bridges. The drilled hole retrofit is often only a temporary solution, so a more permanent and effective retrofit is required. A new field retrofit has been developed that involves loosening the bolts in the connection between the diaphragm and the girders. Research on the retrofit has been initiated; however, no long-term studies of the effects of bolt loosening have been performed. The intent of this research is to study the short-term effects of the bolt loosening retrofit on I-beam and channel diaphragm bridges. The research also addressed the development of a continuous remote monitoring system to investigate the bolt loosening retrofit on an X-type diaphragm bridge over a number of months, ensuring that the measured strain and displacement reductions are not affected by time and continuous traffic loading on the bridge. The testing for the first three investigations is based on instrumentation of web gaps in a negative moment region on Iowa Department of Transportation bridges with I-beam, channel, and X-type diaphragms. One bridge of each type was instrumented with strain gages and deflection transducers. Field tests, using loaded trucks of known weight and configuration, were conducted on the bridges with the bolts in the tight condition and after implementing the bolt loosening retrofit to measure the effects of loosening the diaphragm bolts. Long-term data were also collected on the X-diaphragm bridge by a data acquisition system that collected the data continuously under ambient truck loading. The collected data were retrievable by an off-site modem connection to the remote data acquisition system. The data collection features and ruggedness of this system for remote bridge monitoring make it viable as a pilot system for future monitoring projects in Iowa. Results indicate that loosening the diaphragm bolts reduces strain and out-of-plane displacement in the web gap, and that the reduction is not affected over time by traffic or environmental loading on the bridge. Reducing the strain in the web gap allows the bridge to support more cycles of loading before experiencing fatigue, thus increase the service life of the bridge. Two-girder floor beam bridges may also exhibit fatigue cracking in girder webs.
Resumo:
The design of satisfactory supporting and expansion devices for highway bridges is a problem which has concerned bridge design engineers for many years. The problems associated with these devices have been emphasized by the large number of short span bridges required by the current expanded highway program of expressways and interstate highways. The initial objectives of this investigation were: (1) To review and make a field study of devices used for the support of bridge superstructures and for provision of floor expansion; (2) To analyze the forces or factors which influence the design and behavior of supporting devices and floor expansion systems; and (3) To ascertain the need for future research particularly on the problems of obtaining more economical and efficient supporting and expansion devices, and determining maximum allowable distance between such devices. The experimental portion was conducted to evaluate one of the possible simple and economical solutions to the problems observed in the initial portion. The investigation reported herein is divided into four major parts or phases as follows: (1) A review of literature; (2) A survey by questionnaire of design practice of a number of state highway departments and consulting firms; (3) Field observation of existing bridges; and, (4) An experimental comparison of the dynamic behavior of rigid and elastomeric bearings.
Resumo:
BACKGROUND: Randomized controlled trials (RCTs) may be discontinued because of apparent harm, benefit, or futility. Other RCTs are discontinued early because of insufficient recruitment. Trial discontinuation has ethical implications, because participants consent on the premise of contributing to new medical knowledge, Research Ethics Committees (RECs) spend considerable effort reviewing study protocols, and limited resources for conducting research are wasted. Currently, little is known regarding the frequency and characteristics of discontinued RCTs. METHODS/DESIGN: Our aims are, first, to determine the prevalence of RCT discontinuation for specific reasons; second, to determine whether the risk of RCT discontinuation for specific reasons differs between investigator- and industry-initiated RCTs; third, to identify risk factors for RCT discontinuation due to insufficient recruitment; fourth, to determine at what stage RCTs are discontinued; and fifth, to examine the publication history of discontinued RCTs.We are currently assembling a multicenter cohort of RCTs based on protocols approved between 2000 and 2002/3 by 6 RECs in Switzerland, Germany, and Canada. We are extracting data on RCT characteristics and planned recruitment for all included protocols. Completion and publication status is determined using information from correspondence between investigators and RECs, publications identified through literature searches, or by contacting the investigators. We will use multivariable regression models to identify risk factors for trial discontinuation due to insufficient recruitment. We aim to include over 1000 RCTs of which an anticipated 150 will have been discontinued due to insufficient recruitment. DISCUSSION: Our study will provide insights into the prevalence and characteristics of RCTs that were discontinued. Effective recruitment strategies and the anticipation of problems are key issues in the planning and evaluation of trials by investigators, Clinical Trial Units, RECs and funding agencies. Identification and modification of barriers to successful study completion at an early stage could help to reduce the risk of trial discontinuation, save limited resources, and enable RCTs to better meet their ethical requirements.