873 resultados para Design of Experiments and Sample Surveys
Resumo:
This research project involves a comparative, cross-national study of truth and reconciliation commissions (TRCs) in countries around the world that have used these extra-judicial institutions to pursue justice and promote national reconciliation during periods of democratic transition or following a civil conflict marked by intense violence and severe human rights abuses. An important objective of truth and reconciliation commissions involves instituting measures to address serious human rights abuses that have occurred as a result of discrimination, ethnocentrism and racism. In recent years, rather than solely utilizing traditional methods of conflict resolution and criminal prosecution, transitional governments have established truth and reconciliation commissions as part of efforts to foster psychological, social and political healing.
The primary objective of this research project is to determine why there has been a proliferation of truth and reconciliation commissions around the world in recent decades, and assess whether the perceived effectiveness of these commissions is real and substantial. In this work, using a multi-method approach that involves quantitative and qualitative analysis, I consider the institutional design and structural composition of truth and reconciliation commissions, as well as the roles that these commissions play in the democratic transformation of nations with a history of civil conflict and human rights violations.
In addition to a focus on institutional design of truth and reconciliation commissions, I use a group identity framework that is grounded in social identity theory to examine the historical background and sociopolitical context in which truth commissions have been adopted in countries around the world. This group identity framework serves as an invaluable lens through which questions related to truth and reconciliation commissions and other transitional justice mechanisms can be explored. I also present a unique theoretical framework, the reconciliatory democratization paradigm, that is especially useful for examining the complex interactions between the various political elements that directly affect the processes of democratic consolidation and reconciliation in countries in which truth and reconciliation commissions have been established. Finally, I tackle the question of whether successor regimes that institute truth and reconciliation commissions can effectively address the human rights violations that occurred in the past, and prevent the recurrence of these abuses.
Resumo:
Since the implementation of the Programa Conectar Igualdad (PCI) (Connecting Equality Program) in 2010 in Argentina, numerous Social Science specialists started to research how massive ICT introduction in schools would radically affect teaching and learning processes, knowledge building and youth behaviour. Nevertheless, there is still not much empirical evidence showing the ways in which these technologies are appropriated. This situation discloses the need of placing research questions locally situated with regard to those potential changes. What existing access methods does PCI encounter? And how does its implementation participate in the design of personal and family heterogeneous trajectories of ICTs appropriation? How do the students themselves perceive the infl uence of PCI on their own technologic abilities and competence? How do knowledge and aptitudes associated to new digital media articulate with the knowledge manners promoted by the school format and institutionalism? How does the massive introduction of netbooks affect the interaction among different school actors (students-teachers)? What happens in other sociability and socialization spaces, such as the house and cybercafé?
Resumo:
Regulations pertaining to carbon dioxide capture with offshore storage (CCS) require an understanding of the potential localised environmental impacts and demonstrably suitable monitoring practices. This study uses a marine ecosystem model to examine a comprehensive range of hypothetical CO2 leakage scenarios, quantifying both impact and recovery time within the benthic system. Whilst significant mortalities and long recovery times were projected for the larger and longer term scenarios, shorter-term or low level exposures lead to reduced projected impacts. This suggests that efficient monitoring and leak mitigation strategies, coupled with appropriate selection of storage sites can effectively limit concerns regarding localised environmental impacts from CCS. The feedbacks and interactions between physiological and ecological responses simulated reveal that benthic responses to CO2 leakage could be complex. This type of modelling investigation can aid the understanding of impact potential, the role of benthic community recovery and inform the design of baseline and monitoring surveys.
Resumo:
Regulations pertaining to carbon dioxide capture with offshore storage (CCS) require an understanding of the potential localised environmental impacts and demonstrably suitable monitoring practices. This study uses a marine ecosystem model to examine a comprehensive range of hypothetical CO2 leakage scenarios, quantifying both impact and recovery time within the benthic system. Whilst significant mortalities and long recovery times were projected for the larger and longer term scenarios, shorter-term or low level exposures lead to reduced projected impacts. This suggests that efficient monitoring and leak mitigation strategies, coupled with appropriate selection of storage sites can effectively limit concerns regarding localised environmental impacts from CCS. The feedbacks and interactions between physiological and ecological responses simulated reveal that benthic responses to CO2 leakage could be complex. This type of modelling investigation can aid the understanding of impact potential, the role of benthic community recovery and inform the design of baseline and monitoring surveys.
Resumo:
Hybrid OECB (Opto-Electrical Circuit Boards) are expected to make a significant impact in the telecomm switches arena within the next five years, creating optical backplanes with high speed point-to-point optical interconnects. The critical aspect in the manufacture of the optical backplane is the successful coupling between VCSEL (Vertical Cavity Surface Emitting Laser) device and embedded waveguide in the OECB. Optical performance will be affected by CTE mismatch in the material properties, and manufacturing tolerances. This paper will discuss results from a multidisciplinary research project involving both experimentation and modelling. Key process parameters are being investigated using Design of Experiments and Finite Element Modelling. Simulations have been undertaken that predict the temperature in the VCSEL during normal operation, and the subsequent misalignment that this imposes. The results from the thermomechanical analysis are being used with optimisation software and the experimental DOE (Design of Experiments) to identify packaging parameters that minimise misalignment. These results are also imported into an optical model which solves optical energy and attenuation from the VCSEL aperture into, and then through, the waveguide. Results from the thermomechanical and optical models will be discussed as will the experimental results from the DOE.
Resumo:
This paper discusses an optimisation based decision support system and methodology for electronic packaging and product design and development which is capable of addressing in efficient manner specified environmental, reliability and cost requirements. A study which focuses on the design of a flip-chip package is presented. Different alternatives for the design of the flip-chip package are considered based on existing options for the applied underfill and volume of solder material used to form the interconnects. Variations in these design input parameters have simultaneous effect on package aspects such as cost, environmental impact and reliability. A decision system for the design of the flip-chip that uses numerical optimisation approach is used to identify the package optimal specification which satisfies the imposed requirements. The reliability aspect of interest is the fatigue of solder joints under thermal cycling. Transient nonlinear finite element analysis (FEA) is used to simulate the thermal fatigue damage in solder joints subject to thermal cycling. Simulation results are manipulated within design of experiments and response surface modelling framework to provide numerical model for reliability which can be used to quantify the package reliability. Assessment of the environmental impact of the package materials is performed by using so called Toxic Index (TI). In this paper we demonstrate the evaluation of the environmental impact only for underfill and lead-free solder materials. This evaluation is based on the amount of material per flip-chip package. Cost is the dominant factor in contemporary flip-chip packaging industry. In the optimisation based decision support system for the design of the flip-chip package, cost of materials which varies as a result of variations in the design parameters is considered.
Resumo:
In this study, a new waste management solution for thermoset glass fibre reinforced polymer (GFRP) based products was assessed. Mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the prospective added-value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. Different GFRP waste admixed mortar formulations were analyzed varying the content, between 4% up to 12% in weight, of GFRP powder and fibre mix waste. The effect of incorporation of a silane coupling agent was also assessed. Design of experiments and data treatment was accomplished through implementation of full factorial design and analysis of variance ANOVA. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacity of GFRP waste admixed mortars with regard to unmodified polymer mortars. The key findings of this study showed a viable technological option for improving the quality of polyester based mortars and highlight a potential cost-effective waste management solution for thermoset composite materials in the production of sustainable concrete-polymer based products.
Resumo:
In this study, a new waste management solution for thermoset glass fibre reinforced polymer (GFRP) based products was assessed. Mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the prospective added-value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. Different GFRP waste admixed mortar formulations were analyzed varying the content, between 4% up to 12% in weight, of GFRP powder and fibre mix waste. The effect of incorporation of a silane coupling agent was also assessed. Design of experiments and data treatment was accomplished through implementation of full factorial design and analysis of variance ANOVA. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacity of GFRP waste admixed mortars with regard to unmodified polymer mortars. The key findings of this study showed a viable technological option for improving the quality of polyester based mortars and highlight a potential cost-effective waste management solution for thermoset composite materials in the production of sustainable concrete-polymer based products.
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remolded, and complex composition of the composite itself, which includes glass fibres, matrix and different types of inorganic fillers. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. There are several methods to recycle GFR thermostable materials: (a) incineration, with partial energy recovery due to the heat generated during organic part combustion; (b) thermal and/or chemical recycling, such as solvolysis, pyrolisis and similar thermal decomposition processes, with glass fibre recovering; and (c) mechanical recycling or size reduction, in which the material is subjected to a milling process in order to obtain a specific grain size that makes the material suitable as reinforcement in new formulations. This last method has important advantages over the previous ones: there is no atmospheric pollution by gas emission, a much simpler equipment is required as compared with ovens necessary for thermal recycling processes, and does not require the use of chemical solvents with subsequent environmental impacts. In this study the effect of incorporation of recycled GFRP waste materials, obtained by means of milling processes, on mechanical behavior of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste materials, with distinct size gradings, were incorporated into polyester polymer mortars as sand aggregates and filler replacements. The effect of GFRP waste treatment with silane coupling agent was also assessed. Design of experiments and data treatment were accomplish by means of factorial design and analysis of variance ANOVA. The use of factorial experiment design, instead of the one-factor-at-a-time method is efficient at allowing the evaluation of the effects and possible interactions of the different material factors involved. Experimental results were promising toward the recyclability of GFRP waste materials as aggregates and filler replacements for polymer mortar, with significant gain of mechanical properties with regard to non-modified polymer mortars.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Analisa-se experimentalmente o processo de extração do óleo essencial de rizomas de priprioca (Cyperus articulatus L.) por arraste com vapor d’água saturado, em um protótipo em escala de bancada. Por meio de experimentos estatisticamente planejados, estimam-se as condições ótimas o processo de modo a maximizar as variáveis de resposta rendimento em óleo e teor de mustacona, componente majoritário do óleo essencial de priprioca, em função de variáveis operacionais de entrada do processo. As variáveis independentes e respectivos níveis são: carga de rizomas de priprioca, em gramas (64, 200, 400, 600, 736); granulometria dos rizomas, em milímetros (0,61; 1,015; 1,6; 2,19; 2,58) e tempo de extração, em minutos (40, 60, 90, 120, 140). Utilizando um planejamento composto central, com auxílio do aplicativo Statistica® 7.0, são propostos modelos matemáticos para as respostas em função das variáveis independentes isoladas e de suas combinações. Constata-se que o rendimento em óleo essencial e os teores de mustacona podem ser estimados adequadamente por modelos polinomiais de segunda ordem. São obtidos simultaneamente maiores rendimentos em óleo e teores de mustacona, quando a carga de rizomas varia de 105 a 400 gramas para tempos de extração compreendidos entre 105 e 140 minutos.
Resumo:
Pós-graduação em Engenharia de Produção - FEB
Resumo:
Motivation: Microarray experiments generate a high data volume. However, often due to financial or experimental considerations, e.g. lack of sample, there is little or no replication of the experiments or hybridizations. These factors combined with the intrinsic variability associated with the measurement of gene expression can result in an unsatisfactory detection rate of differential gene expression (DGE). Our motivation was to provide an easy to use measure of the success rate of DGE detection that could find routine use in the design of microarray experiments or in post-experiment assessment.
Resumo:
Cutaneous malignant melanoma (CMM) is a major health issue in Queensland, Australia, which has the world’s highest incidence. Recent molecular and epidemiologic studies suggest that CMM arises through multiple etiological pathways involving gene-environment interactions. Understanding the potential mechanisms leading to CMM requires larger studies than those previously conducted. This article describes the design and baseline characteristics of Q-MEGA, the Queensland Study of Melanoma: Environmental and Genetic Associations, which followed up 4 population-based samples of CMM patients in Queensland, including children, adolescents, men aged over 50, and a large sample of adult cases and their families, including twins. Q-MEGA aims to investigate the roles of genetic and environmental factors, and their interaction, in the etiology of melanoma. Three thousand, four hundred and seventy-one participants took part in the follow-up study and were administered a computer-assisted telephone interview in 2002-2005. Updated data on environmental and phenotypic risk factors, and 2777 blood samples were collected from interviewed participants as well as a subset of relatives. This study provides a large and well-described population-based sample of CMM cases with follow-up data. Characteristics of the cases and repeatability of sun exposure and phenotype measures between the baseline and the follow-up surveys, from 6 to 17 years later, are also described.