889 resultados para Design Principles
Resumo:
As an election looms in Australia, the tax debate continues unabated. Self-interest abounds. When we remove self-interest, we are often reduced to standard design principles for a taxation system. Lost in this discussion is the fundamental purpose of tax, which is to finance government expenditure. Most would argue that tax revenue should be sufficient to meet basic economic and social needs of the community. But how does a community determine what these basic economic and social needs should be? One way is by using a human rights framework. This can provide guidance for both developing and developed countries considering tax reform.
Resumo:
The paper reports the development of new amplitude-comparator techniques which allow the instantaneous comparison of the amplitude of the signals derived from primary line quantities. These techniques are used to derive a variety of impedance characteristics. The merits of the new relaying system are: the simple mode of the relay circuitry, the derivation of closed polar characteristics (i.e. quadrilateral) by a single measuring gate and sharp discontinuities in the polar characteristics. Design principles and circuit models in their schematic form are described and, in addition, a comprehensive theoretical basis for comparison is also presented. Dynamic test results are presented for a quadrilateral characteristic of potentially general application.
Resumo:
A new static 3-step distance relay based on the principle of multi-input phase comparison is described in the paper. Design principles and typical discriminating and logic circuits are described for the new relaying system. The relaying system uses semiconductor circuits throughout and features high speed and good performance. The comparator model, which effects multi-input phase comparison, has been devised to provide reliable pickup for closein faults, and to achieve an improved polar characteristic in the complex- impedance plane, which fits around only the fault area of a transmission line. Operating time of the relay is less than 1 cycle for unbalanced faults, and less than a halfcycle for 3-phase faults. Protective circuits have also been added to detect power swing and to block tripping for a predetermined number of power-swing cycles. The operating characteristics of the relay, as expressed by accuracy/range charts, are presented.
Resumo:
Static distance relays employing semiconductor devices as their active elements offer many advantages over the conventional electromagnetic and rectifier relays. The paper describes single-system and three-system static distance relays, which depend for their operation on the instantaneous-comparison or `block-spike¿ scheme. Design principles and typical discriminating and logic circuits are described for the new relaying equipment. The relaying circuitry has been devised for obtaining uniform performance on all kinds of faults, by the use of two phase detectors¿one for multiphase faults and one for earth faults. The phase detector for multiphase faults provides an improved polar characteristic in the complex-impedance plane, which fits only around the fault area of a transmission line. The other features of the relay are: reliable pickup for close-in faults, least susceptibility to maloperation under power-swing conditions, and reduction in cost and panel space required. The operating characteristics of the relays, as expressed by accuracy/range charts, are also presented.
Resumo:
Electrostatic self-assembly of colloidal and nanoparticles has attracted a lot of attention in recent years, since it offers the possibility of producing novel crystalline structures that have the potential to be used as advanced materials for photonic and other applications. The stoichiometry of these crystals is not constrained by charge neutrality of the two types of particles due to the presence of counterions, and hence a variety of three-dimensional structures have been observed depending on the relative sizes of the particles and their charge. Here we report structural polymorphism of two-dimensional crystals of oppositely charged linear macroions, namely DNA and self-assembled cylindrical micelles of cationic amphiphiles. Our system differs from those studied earlier in terms of the presence of a strongly binding counterion that competes with DNA to bind to the micelle. The presence of these counterions leads to novel structures of these crystals, such as a square lattice and a root 3 x root 3 superlattice of an underlying hexagonal lattice, determined from a detailed analysis of the small-angle diffraction data. These lower-dimensional equilibrium systems can play an important role in developing a deeper theoretical understanding of the stability of crystals of oppositely charged particles. Further, it should be possible to use the same design principles to fabricate structures on a longer length-scale by an appropriate choice of the two macroions.
Resumo:
Most of the biological processes are governed through specific protein-ligand interactions. Discerning different components that contribute toward a favorable protein-ligand interaction could contribute significantly toward better understanding protein function, rationalizing drug design and obtaining design principles for protein engineering. The Protein Data Bank (PDB) currently hosts the structure of similar to 68 000 protein-ligand complexes. Although several databases exist that classify proteins according to sequence and structure, a mere handful of them annotate and classify protein-ligand interactions and provide information on different attributes of molecular recognition. In this study, an exhaustive comparison of all the biologically relevant ligand-binding sites (84 846 sites) has been conducted using PocketMatch: a rapid, parallel, in-house algorithm. PocketMatch quantifies the similarity between binding sites based on structural descriptors and residue attributes. A similarity network was constructed using binding sites whose PocketMatch scores exceeded a high similarity threshold (0.80). The binding site similarity network was clustered into discrete sets of similar sites using the Markov clustering (MCL) algorithm. Furthermore, various computational tools have been used to study different attributes of interactions within the individual clusters. The attributes can be roughly divided into (i) binding site characteristics including pocket shape, nature of residues and interaction profiles with different kinds of atomic probes, (ii) atomic contacts consisting of various types of polar, hydrophobic and aromatic contacts along with binding site water molecules that could play crucial roles in protein-ligand interactions and (iii) binding energetics involved in interactions derived from scoring functions developed for docking. For each ligand-binding site in each protein in the PDB, site similarity information, clusters they belong to and description of site attributes are provided as a relational database-protein-ligand interaction clusters (PLIC).
Resumo:
The transcriptional regulation of gene expression is orchestrated by complex networks of interacting genes. Increasing evidence indicates that these `transcriptional regulatory networks' (TRNs) in bacteria have an inherently hierarchical architecture, although the design principles and the specific advantages offered by this type of organization have not yet been fully elucidated. In this study, we focussed on the hierarchical structure of the TRN of the gram-positive bacterium Bacillus subtilis and performed a comparative analysis with the TRN of the gram-negative bacterium Escherichia coli. Using a graph-theoretic approach, we organized the transcription factors (TFs) and sigma-factors in the TRNs of B. subtilis and E. coli into three hierarchical levels (Top, Middle and Bottom) and studied several structural and functional properties across them. In addition to many similarities, we found also specific differences, explaining the majority of them with variations in the distribution of s-factors across the hierarchical levels in the two organisms. We then investigated the control of target metabolic genes by transcriptional regulators to characterize the differential regulation of three distinct metabolic subsystems (catabolism, anabolism and central energy metabolism). These results suggest that the hierarchical architecture that we observed in B. subtilis represents an effective organization of its TRN to achieve flexibility in response to a wide range of diverse stimuli.
Resumo:
Methane, the primary constituent of natural gas, binds too weakly to nanostructured carbons to meet the targets set for on-board vehicular storage to be viable. We show, using density functional theory calculations, that replacing graphene by graphene oxide increases the adsorption energy of methane by 50%. This enhancement is sufficient to achieve the optimal binding strength. In order to gain insight into the sources of this increased binding, that could also be used to formulate design principles for novel storage materials, we consider a sequence of model systems that progressively take us from graphene to graphene oxide. A careful analysis of the various contributions to the weak binding between the methane molecule and the graphene oxide shows that the enhancement has important contributions from London dispersion interactions as well as electrostatic interactions such as Debye interactions, aided by geometric curvature induced primarily by the presence of epoxy groups. (C) 2015 AIP Publishing LLC.
Resumo:
Apresenta um plano para implantação de uma Arquitetura Orientada a Serviços "SOA", na Câmara dos Deputados - Brasil. O plano de implantação SOA foi estruturado em dois projetos: "Entender SOA" e "Implantar SOA", descritos em suas macro atividades e foi embasado em um arcabouço teórico fundamentado em significativa literatura pesquisada que incluiu os modelos de referência e de arquitetura SOA disponíveis. Foram abordados, além dos aspectos tecnológicos, as questões de governança de TI e questões de cultura organizacional que precisam ser consideradas em projetos dessa natureza, considerando que SOA não é simplesmente uma questão de tecnologia, mas fundamentalmente uma questão de negócio e governança empresarial. Os aspectos de TI também foram explorados de forma suficiente para que as equipes técnicas tenham condições de implementar os princípios de desenho da arquitetura SOA.
Resumo:
Waverider generated from a given flow field has a high lift-to-drag ratio because of attached bow shock on leading edge. However, leading edge blunt and off-design condition can make bow shock off leading edge and have unfavorable influence on aerodynamic characteristics. So these two problems have always been concerned as important engineering science issues by aeronautical engineering scientists. In this paper, through respectively using low speed and high speed waverider design principles, a wide-speed rang vehicle is designed, which can level takeoff and accelerate to hypersonic speed for cruise. In addition, sharp leading edge is blunted to alleviated aeroheating. Theoretical study and wind tunnel test show that this vehicle has good aerodynamic performance in wide-speed range of subsonic, transonic, supersonic and hypersonic speeds.
Resumo:
Flies are particularly adept at balancing the competing demands of delay tolerance, performance, and robustness during flight, which invites thoughtful examination of their multimodal feedback architecture. This dissertation examines stabilization requirements for inner-loop feedback strategies in the flapping flight of Drosophila, the fruit fly, against the backdrop of sensorimotor transformations present in the animal. Flies have evolved multiple specializations to reduce sensorimotor latency, but sensory delay during flight is still significant on the timescale of body dynamics. I explored the effect of sensor delay on flight stability and performance for yaw turns using a dynamically-scaled robot equipped with a real-time feedback system that performed active turns in response to measured yaw torque. The results show a fundamental tradeoff between sensor delay and permissible feedback gain, and suggest that fast mechanosensory feedback provides a source of active damping that compliments that contributed by passive effects. Presented in the context of these findings, a control architecture whereby a haltere-mediated inner-loop proportional controller provides damping for slower visually-mediated feedback is consistent with tethered-flight measurements, free-flight observations, and engineering design principles. Additionally, I investigated how flies adjust stroke features to regulate and stabilize level forward flight. The results suggest that few changes to hovering kinematics are actually required to meet steady-state lift and thrust requirements at different flight speeds, and the primary driver of equilibrium velocity is the aerodynamic pitch moment. This finding is consistent with prior hypotheses and observations regarding the relationship between body pitch and flight speed in fruit flies. The results also show that the dynamics may be stabilized with additional pitch damping, but the magnitude of required damping increases with flight speed. I posit that differences in stroke deviation between the upstroke and downstroke might play a critical role in this stabilization. Fast mechanosensory feedback of the pitch rate could enable active damping, which would inherently exhibit gain scheduling with flight speed if pitch torque is regulated by adjusting stroke deviation. Such a control scheme would provide an elegant solution for flight stabilization across a wide range of flight speeds.
Resumo:
The design, synthesis and magnetic characterization of thiophene-based models for the polaronic ferromagnet are described. Synthetic strategies employing Wittig and Suzuki coupling were employed to produce polymers with extended π-systems. Oxidative doping using AsF_5 or I_2 produces radical cations (polarons) that are stable at room temperature. Magnetic characterization of the doped polymers, using SQUID-based magnetometry, indicates that in several instances ferromagnetic coupling of polarons occurs along the polymer chain. An investigation of the influence of polaron stability and delocalization on the magnitude of ferromagnetic coupling is pursued. A lower limit for mild, solution phase I_2 doping is established. A comparison of the variable temperature data of various polymers reveals that deleterious antiferromagnetic interactions are relatively insensitive to spin concentration, doping protocols or spin state. Comparison of the various polymers reveals useful design principles and suggests new directions for the development of magnetic organic materials. Novel strategies for solubilizing neutral polymeric materials in polar solvents are investigated.
The incorporation of stable bipyridinium spin-containing units into a polymeric high-spin array is explored. Preliminary results suggest that substituted diquat derivatives may serve as stable spin-containing units for the polaronic ferromagnet and are amenable to electrochemical doping. Synthetic efforts to prepare high-spin polymeric materials using viologens as a spin source have been unsuccessful.
Resumo:
Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry.
In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive.
Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for hybridization, fraying, and branch migration, and provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.
In Chapters 3 and 4, we identify and overcome the crucial experimental challenges involved in using our general DNA-based technology for engineering dynamical behaviors in the test tube. In this process, we identify important design rules that inform our choice of molecular motifs and our algorithms for designing and verifying DNA sequences for our molecular implementation. We also develop flexible molecular strategies for "tuning" our reaction rates and stoichiometries in order to compensate for unavoidable non-idealities in the molecular implementation, such as imperfectly synthesized molecules and spurious "leak" pathways that compete with desired pathways.
We successfully implement three distinct autocatalytic reactions, which we then combine into a de novo chemical oscillator. Unlike biological networks, which use sophisticated evolved molecules (like proteins) to realize such behavior, our test tube realization is the first to demonstrate that Watson-Crick base pairing interactions alone suffice for oscillatory dynamics. Since our design pipeline is general and applicable to any CRN, our experimental demonstration of a de novo chemical oscillator could enable the systematic construction of CRNs with other dynamic behaviors.
Resumo:
Background: Two distinct trends are emerging with respect to how data is shared, collected, and analyzed within the bioinformatics community. First, Linked Data, exposed as SPARQL endpoints, promises to make data easier to collect and integrate by moving towards the harmonization of data syntax, descriptive vocabularies, and identifiers, as well as providing a standardized mechanism for data access. Second, Web Services, often linked together into workflows, normalize data access and create transparent, reproducible scientific methodologies that can, in principle, be re-used and customized to suit new scientific questions. Constructing queries that traverse semantically-rich Linked Data requires substantial expertise, yet traditional RESTful or SOAP Web Services cannot adequately describe the content of a SPARQL endpoint. We propose that content-driven Semantic Web Services can enable facile discovery of Linked Data, independent of their location. Results: We use a well-curated Linked Dataset - OpenLifeData - and utilize its descriptive metadata to automatically configure a series of more than 22,000 Semantic Web Services that expose all of its content via the SADI set of design principles. The OpenLifeData SADI services are discoverable via queries to the SHARE registry and easy to integrate into new or existing bioinformatics workflows and analytical pipelines. We demonstrate the utility of this system through comparison of Web Service-mediated data access with traditional SPARQL, and note that this approach not only simplifies data retrieval, but simultaneously provides protection against resource-intensive queries. Conclusions: We show, through a variety of different clients and examples of varying complexity, that data from the myriad OpenLifeData can be recovered without any need for prior-knowledge of the content or structure of the SPARQL endpoints. We also demonstrate that, via clients such as SHARE, the complexity of federated SPARQL queries is dramatically reduced.
Resumo:
Dynamic centrifuge modelling has been carried out at Cambridge since the late 1970s. Over this period, three different mechanical earthquake actuators were developed. In this paper the development of a new servo-hydraulic earthquake actuator is described. The basic design principles are explained along with the need to carry out these designs to match the existing services and systems of the 35 year old Turner beam centrifuge at Cambridge. In addition, some of the features of the Turner beam centrifuge are exploited in the design of this new earthquake actuator. The paper also explains the mechanical fabrication of the actuator and the control systems that were developed in order to generate real earthquake motions. Finally, the performance of this new servo-hydraulic earthquake actuator is presented and assessed based on a wide range of earthquake input motions.