990 resultados para Dental Marginal Adaptation
Resumo:
Objectives: This study evaluated the marginal gaps on several surfaces of onlays created with the Cerec 3D system using one intraoral and two extraoral optical impression methods. Methods: A human molar (#19) was mounted with its adjacent teeth on a typodont (Frasaco) and prepared for a MODL onlay. The typodont was assembled in the mannequin head in order to simulate clinical conditions. The same operator took 36 individual optical impressions using a CEREC 3D camera. For group 1 (IP), a thin layer of titanium dioxide powder (CEREC powder-VITA) was applied directly onto the surface of the preparation for imaging (n=12). For group 2 (EP), a sectional impression was taken with hydrocolloid Identic Syringable (Dux Dental), a die made with polyvinylsiloxane KwikkModel Scan (R-dental Dentalerzeugnisse GmbH) and powdered with titanium dioxide for imaging (n=12). For group 3 (ES), a sectional impression was taken with PVS and a sectional stock tray, a die fabricated in stone (Diamond die- HI-TEC Dental Products) and the die being imaged without powdering (n=12). One operator designed and machined the onlays in Vita Blocks Mark II for Cerec (VITA) using a CEREC 3D. The marginal gaps (pm) were measured with an optical microscope (50x) at 12 points, three on each surface of the MODL. The results were analyzed by two-way ANOVA/Tukey's (p=0.05). Results: The overall mean marginal gaps (mu m) for the three methods were: IP=111.6 (+/- 34.0); EP=161.4 (+/- 37.6) and ES=116.8 (+/- 42.3). IP and ES were equal, but both were significantly less than EP. The pooled mean marginal gaps (mu m) for the occlusal = 110.5 (+/- 39) and lingual = 111.5 (+/- 30.5) surfaces were equivalent and significantly less than the distal = 136.5 (+/- 42.5) and mesial = 161.1 (+/- 43.3). Conclusion: The marginal gap of CEREC 3D onlay restorations was not different when the optical impression was taken intraorally vs extraorally using a stone cast that does not require powdering. The lingual and occlusal surfaces showed the lowest gaps.
Resumo:
The purpose of this in vitro study was to investigate the cervical marginal leakage in class II restorations with chemically cured resin (P10) and light-cured resin (P30) in two types of cavities: conventional and adhesive. The effect of acid-etching in this area was also observed. Dentine adhesive Scotchbond was used in all experimental groups. Leakage was evidenced by Rodamina B dye penetration after thermocycling procedure between 10 degrees C and 50 degrees C temperature and analysed by using Zeiss Stereoscopic Magnifying Glass (10 X). According to the results obtained marginal leakage occurred in all experimental groups, with lower percentage for adhesives cavities when enamel acid-etching and light-cured resin P30 was used.
Resumo:
Standardization of measurements for marginal fit of castings is critical. This study describes the fabrication of a device that allowed fixation of specimens on a Toolmakers microscope with identical conditions according to tri-dimensional positioning of specimens, measuring location, and seating force. The device also allows mapping of the marginal discrepancies on the entire marginal perimeter of the tooth preparation.
Resumo:
Objectives: This study assessed the effect of cast rectifiers on the marginal misfit of cast UCLA abutments compared to premachined UCLA abutments. The influence of casting and porcelain baking on the marginal misfit of these components was also investigated. Methods: Two groups were analyzed: test group - 10 cast UCLA abutments, finished with cast rectifier and submitted to ceramic application; control group - 10 premachined UCLA abutments, cast with noble metal alloy and submitted to ceramic application. Vertical misfit measurements were performed under light microscopy. In the test group, measurements were performed before and after the use of cast rectifiers, and after ceramic application. In the control group, measurements were performed before and after casting, and after ceramic application. Data were submitted to statistical analysis by ANOVA and Tukey's test (α= 5%). Results: The use of cast rectifiers significantly reduced the marginal misfit of cast UCLA abutments (from 25.68μm to 14.83μm; p<0.05). After ceramic application, the rectified cylinders presented misfit values (16.18μm) similar to those of premachined components (14.3 μm). Casting of the premachined UCLA abutments altered the marginal misfit of these components (from 9.63 μm to 14.6 μm; p<0.05). There were no significant changes after porcelain baking, in both groups. Conclusion: The use of cast rectifiers reduced the vertical misfit of cast UCLA abutments. Even with carefully performed laboratory steps, changes at the implant interface of premachined UCLA abutments occurred. Ceramic application did not alter the marginal misfit values of UCLA abutments.
Resumo:
As the adaptation of titanium crowns obtained by Rematitan Plus investment, specific for titanium, is not recognized to be suitable, this study evaluated the effect of the concentration of the specific liquid and the temperature of the mold of investments on the internal misfit of crowns cast on commercially pure titanium. Individual dies of epoxy resin were obtained, representing teeth prepared for full-crown restoration with a 6-degree axial surface convergence angle and shoulder (1.0 mm). For the waxing of each crown, a ring-shaped stainless steel matrix (8.0mm internal diameter; 7.5 mm height) was adapted above the individual dies of epoxy resin. The Rematian Plus investment was mixed according to the manufacturer's instructions using two different concentrations of the specific liquid: 100%, 75%. Casting was performed in a Discovery Plasma Ar-arc vacuum-pressure casting machine with molds at temperatures of 430°C, 515°C and 600°C. The crowns were cleaned individually in a solution (1% HF + 13% HNO3) for 10 min using a ultrasonic cleaner, with no internal adaptations, and luted with zinc phosphate cement under a 5 kg static load. The crown and die assemblies were embedded in resin and sectioned longitudinally. The area occupied by cement was observed using stereoscopic lens (10X) and measured by the Leica Qwin image analysis system (mm2). The data for each experimental condition (n=8) were analyzed by Kruskal-Wallis non-parametric test (á=0.05). The results showed that liquid dilution and the increase in mold temperature did not significantly influence the levels of internal fit of the cast titanium crowns. The lowest means (±SD) of internal misfit were obtained for the 430°C/100%: (7.25 mm2 ±1.59) and 600°C/100% (8.8 mm2 ±2.25) groups, which presented statistically similar levels of internal misfit.
Resumo:
The aim of this study was to determine the effect of the exposure of different endodontic materials to different dye solutions by evaluating the optical density of the dye solutions. Seventy-five plastic tubes were filled with one of the following materials: AH Plus, Sealapex, Portland cement, MTA (Angelus and Pro Root) and fifteen control plastic tubes were not. Each specimen of material and control was immersed in a container with 1 ml of each dye solution. A 0.1 ml-dye solution aliquote was removed before immersion and after 12, 24, 48 and 72 hours of each specimen immersion to record its optical density (OD) in a spectrophotometer. Statistical analysis was performed with ANOVA and Tukey tests (5%). No significant difference was found among any of the solution OD values for AH Plus cement. Portland cement promoted different OD values after 12 hours of immersion. MTA-Angelus cement presented different OD values only for 2% rhodamine B and the MTA-Pro Root cement presented different OD values in all 2% rhodamine B samples. Sealapex cement promoted a reduction in the India Ink OD values. Dye evaluation through OD seems to be an interesting method to select the best dye solution to use in a given marginal leakage study.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Odontológicas - FOAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Odontológicas - FOAR
Resumo:
Pós-graduação em Ciências Odontológicas - FOAR
Resumo:
Pós-graduação em Ciência Odontólogica - FOA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)