849 resultados para Density-based Scanning Algorithm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Earthquake early warning (EEW) systems have been rapidly developing over the past decade. Japan Meteorological Agency (JMA) has an EEW system that was operating during the 2011 M9 Tohoku earthquake in Japan, and this increased the awareness of EEW systems around the world. While longer-time earthquake prediction still faces many challenges to be practical, the availability of shorter-time EEW opens up a new door for earthquake loss mitigation. After an earthquake fault begins rupturing, an EEW system utilizes the first few seconds of recorded seismic waveform data to quickly predict the hypocenter location, magnitude, origin time and the expected shaking intensity level around the region. This early warning information is broadcast to different sites before the strong shaking arrives. The warning lead time of such a system is short, typically a few seconds to a minute or so, and the information is uncertain. These factors limit human intervention to activate mitigation actions and this must be addressed for engineering applications of EEW. This study applies a Bayesian probabilistic approach along with machine learning techniques and decision theories from economics to improve different aspects of EEW operation, including extending it to engineering applications.

Existing EEW systems are often based on a deterministic approach. Often, they assume that only a single event occurs within a short period of time, which led to many false alarms after the Tohoku earthquake in Japan. This study develops a probability-based EEW algorithm based on an existing deterministic model to extend the EEW system to the case of concurrent events, which are often observed during the aftershock sequence after a large earthquake.

To overcome the challenge of uncertain information and short lead time of EEW, this study also develops an earthquake probability-based automated decision-making (ePAD) framework to make robust decision for EEW mitigation applications. A cost-benefit model that can capture the uncertainties in EEW information and the decision process is used. This approach is called the Performance-Based Earthquake Early Warning, which is based on the PEER Performance-Based Earthquake Engineering method. Use of surrogate models is suggested to improve computational efficiency. Also, new models are proposed to add the influence of lead time into the cost-benefit analysis. For example, a value of information model is used to quantify the potential value of delaying the activation of a mitigation action for a possible reduction of the uncertainty of EEW information in the next update. Two practical examples, evacuation alert and elevator control, are studied to illustrate the ePAD framework. Potential advanced EEW applications, such as the case of multiple-action decisions and the synergy of EEW and structural health monitoring systems, are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents a topology optimization methodology for the systematic design of optimal multifunctional silicon anode structures in lithium-ion batteries. In order to develop next generation high performance lithium-ion batteries, key design challenges relating to the silicon anode structure must be addressed, namely the lithiation-induced mechanical degradation and the low intrinsic electrical conductivity of silicon. As such, this work considers two design objectives of minimum compliance under design dependent volume expansion, and maximum electrical conduction through the structure, both of which are subject to a constraint on material volume. Density-based topology optimization methods are employed in conjunction with regularization techniques, a continuation scheme, and mathematical programming methods. The objectives are first considered individually, during which the iteration history, mesh independence, and influence of prescribed volume fraction and minimum length scale are investigated. The methodology is subsequently extended to a bi-objective formulation to simultaneously address both the compliance and conduction design criteria. A weighting method is used to derive the Pareto fronts, which demonstrate a clear trade-off between the competing design objectives. Furthermore, a systematic parameter study is undertaken to determine the influence of the prescribed volume fraction and minimum length scale on the optimal combined topologies. The developments presented in this work provide a foundation for the informed design and development of silicon anode structures for high performance lithium-ion batteries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study of emotions in human-computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional Hidden Markov models generally consist of a Markov chain observed through a linear map corrupted by additive noise. This general class of model has enjoyed a huge and diverse range of applications, for example, speech processing, biomedical signal processing and more recently quantitative finance. However, a lesser known extension of this general class of model is the so-called Factorial Hidden Markov Model (FHMM). FHMMs also have diverse applications, notably in machine learning, artificial intelligence and speech recognition [13, 17]. FHMMs extend the usual class of HMMs, by supposing the partially observed state process is a finite collection of distinct Markov chains, either statistically independent or dependent. There is also considerable current activity in applying collections of partially observed Markov chains to complex action recognition problems, see, for example, [6]. In this article we consider the Maximum Likelihood (ML) parameter estimation problem for FHMMs. Much of the extant literature concerning this problem presents parameter estimation schemes based on full data log-likelihood EM algorithms. This approach can be slow to converge and often imposes heavy demands on computer memory. The latter point is particularly relevant for the class of FHMMs where state space dimensions are relatively large. The contribution in this article is to develop new recursive formulae for a filter-based EM algorithm that can be implemented online. Our new formulae are equivalent ML estimators, however, these formulae are purely recursive and so, significantly reduce numerical complexity and memory requirements. A computer simulation is included to demonstrate the performance of our results. © Taylor & Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

针对多机器人探索未知环境问题,提出了改进型边界探索算法。该算法综合考虑边界角度和距离两种因素,引入分散机制,使机器人团队协同工作,避免出现拥挤,减少探索过程中的重复覆盖和路径交叉现象。基于与其他方法的实验比较结果表明,该探索方法使多机器人具有更好的团队协作能力,提高了探索效率。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

深入分析了经典的Canny边缘检测算法,针对其在参数确定的自主能力不高的问题,提出一种新的基于大津法和统计理论的自适应边缘提取方法,通过对一组参数进行了统计优化,自适应地确定边缘检测的全局最优参数。实验结果表明本文提出的非结构环境下目标自适应边缘提取方法能够有效地抑制噪声,自适应地确定最优边缘提取参数,提高了边缘定位精度。最后,通过实验表明,本文提出的方法在环境信息未知月球探测应用中具有较高边缘检测性能。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

将GPS技术应用于蛇形机器人自主运动控制.根据蛇形机器人的基本运动方式, 针对其现有的前进、后退、近似角度转弯等运动特点,提出了一种适用于该种蛇形机器人的自主移动算法,即用蛇头运动的方向近似看作蛇体运动方向.通过仿真验证了该算法的有效性,能够使蛇形机器人自主地到达目标点。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we introduce a theory of policy routing dynamics based on fundamental axioms of routing update mechanisms. We develop a dynamic policy routing model (DPR) that extends the static formalism of the stable paths problem (introduced by Griffin et al.) with discrete synchronous time. DPR captures the propagation of path changes in any dynamic network irrespective of its time-varying topology. We introduce several novel structures such as causation chains, dispute fences and policy digraphs that model different aspects of routing dynamics and provide insight into how these dynamics manifest in a network. We exercise the practicality of the theoretical foundation provided by DPR with two fundamental problems: routing dynamics minimization and policy conflict detection. The dynamics minimization problem utilizes policy digraphs, that capture the dependencies in routing policies irrespective of underlying topology dynamics, to solve a graph optimization problem. This optimization problem explicitly minimizes the number of routing update messages in a dynamic network by optimally changing the path preferences of a minimal subset of nodes. The conflict detection problem, on the other hand, utilizes a theoretical result of DPR where the root cause of a causation cycle (i.e., cycle of routing update messages) can be precisely inferred as either a transient route flap or a dispute wheel (i.e., policy conflict). Using this result we develop SafetyPulse, a token-based distributed algorithm to detect policy conflicts in a dynamic network. SafetyPulse is privacy preserving, computationally efficient, and provably correct.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Determining the evolutionary relationships among the major lineages of extant birds has been one of the biggest challenges in systematic biology. To address this challenge, we assembled or collected the genomes of 48 avian species spanning most orders of birds, including all Neognathae and two of the five Palaeognathae orders. We used these genomes to construct a genome-scale avian phylogenetic tree and perform comparative genomic analyses. FINDINGS: Here we present the datasets associated with the phylogenomic analyses, which include sequence alignment files consisting of nucleotides, amino acids, indels, and transposable elements, as well as tree files containing gene trees and species trees. Inferring an accurate phylogeny required generating: 1) A well annotated data set across species based on genome synteny; 2) Alignments with unaligned or incorrectly overaligned sequences filtered out; and 3) Diverse data sets, including genes and their inferred trees, indels, and transposable elements. Our total evidence nucleotide tree (TENT) data set (consisting of exons, introns, and UCEs) gave what we consider our most reliable species tree when using the concatenation-based ExaML algorithm or when using statistical binning with the coalescence-based MP-EST algorithm (which we refer to as MP-EST*). Other data sets, such as the coding sequence of some exons, revealed other properties of genome evolution, namely convergence. CONCLUSIONS: The Avian Phylogenomics Project is the largest vertebrate phylogenomics project to date that we are aware of. The sequence, alignment, and tree data are expected to accelerate analyses in phylogenomics and other related areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary objective of this work is the analysis and interpretation of coronal observations of Capella obtained in 1999 September with the High Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory and the Extreme Ultraviolet Explorer (EUVE). He-like lines of O (O vii) are used to derive a density of 1.7 x 10(10) cm(-3) for the coronae of the binary, consistent with the upper limits derived from Fe xxi, Ne ix and Mg xi line ratios. Previous estimates of the electron density based on Fe xxi should be considered as upper limits. We construct emission measure distributions and compare the theoretical and observed spectra to conclude that the coronal material has a temperature distribution that peaks around 4-6 MK, implying that the coronae of Capella were significantly cooler than in the previous years. In addition, we present an extended line list with over 100 features in the 5-24 Angstrom wavelength range, and find that the X-ray spectrum is very similar to that of a solar flare observed with SMM. The observed to theoretical Fe xvii 15.012-Angstrom line intensity reveals that opacity has no significant effect on the line flux. We derive an upper limit to the optical depth, which we combine with the electron density to derive an upper limit of 3000 km for the size of the Fe xvii emitting region. In the same context, we use the Si iv transition region lines of Capella from HST/Goddard High-Resolution Spectrometer observations to show that opacity can be significant at T = 10(5) K, and derive a path-length of approximate to 75 kin for the transition region. Both the coronal and transition region observations are consistent with very small emitting regions, which could be explained by small loops over the stellar surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an Invariant Information Local Sub-map Filter (IILSF) as a technique for consistent Simultaneous Localisation and Mapping (SLAM) in a large environment. It harnesses the benefits of sub-map technique to improve the consistency and efficiency of Extended Kalman Filter (EKF) based SLAM. The IILSF makes use of invariant information obtained from estimated locations of features in independent sub-maps, instead of incorporating every observation directly into the global map. Then the global map is updated at regular intervals. Applying this technique to the EKF based SLAM algorithm: (a) reduces the computational complexity of maintaining the global map estimates and (b) simplifies transformation complexities and data association ambiguities usually experienced in fusing sub-maps together. Simulation results show that the method was able to accurately fuse local map observations to generate an efficient and consistent global map, in addition to significantly reducing computational cost and data association ambiguities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A technique for optimizing the efficiency of the sub-map method for large-scale simultaneous localization and mapping (SLAM) is proposed. It optimizes the benefits of the sub-map technique to improve the accuracy and consistency of an extended Kalman filter (EKF)-based SLAM. Error models were developed and engaged to investigate some of the outstanding issues in employing the sub-map technique in SLAM. Such issues include the size (distance) of an optimal sub-map, the acceptable error effect caused by the process noise covariance on the predictions and estimations made within a sub-map, when to terminate an existing sub-map and start a new one and the magnitude of the process noise covariance that could produce such an effect. Numerical results obtained from the study and an error-correcting process were engaged to optimize the accuracy and convergence of the Invariant Information Local Sub-map Filter previously proposed. Applying this technique to the EKF-based SLAM algorithm (a) reduces the computational burden of maintaining the global map estimates and (b) simplifies transformation complexities and data association ambiguities usually experienced in fusing sub-maps together. A Monte Carlo analysis of the system is presented as a means of demonstrating the consistency and efficacy of the proposed technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clean and renewable energy generation and supply has drawn much attention worldwide in recent years, the proton exchange membrane (PEM) fuel cells and solar cells are among the most popular technologies. Accurately modeling the PEM fuel cells as well as solar cells is critical in their applications, and this involves the identification and optimization of model parameters. This is however challenging due to the highly nonlinear and complex nature of the models. In particular for PEM fuel cells, the model has to be optimized under different operation conditions, thus making the solution space extremely complex. In this paper, an improved and simplified teaching-learning based optimization algorithm (STLBO) is proposed to identify and optimize parameters for these two types of cell models. This is achieved by introducing an elite strategy to improve the quality of population and a local search is employed to further enhance the performance of the global best solution. To improve the diversity of the local search a chaotic map is also introduced. Compared with the basic TLBO, the structure of the proposed algorithm is much simplified and the searching ability is significantly enhanced. The performance of the proposed STLBO is firstly tested and verified on two low dimension decomposable problems and twelve large scale benchmark functions, then on the parameter identification of PEM fuel cell as well as solar cell models. Intensive experimental simulations show that the proposed STLBO exhibits excellent performance in terms of the accuracy and speed, in comparison with those reported in the literature.