966 resultados para Defense Mechanisms Inventory


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: Although varicocele size has an inverse relationship with baseline semen parameters and a direct relationship with seminal reactive oxygen species in infertile patients, to our knowledge the effect of varicocele grade in fertile men is unknown. We evaluated the impact of varicocele grade on seminal parameters, testicular size and seminal reactive oxygen species in fertile men. Materials and Methods: We prospectively evaluated 194 men from July 2004 to April 2010. Of the men 156 were fertile and classified by presence of varicocele. A total of 38 infertile patients with varicocele as the only identifiable cause of infertility comprised the control group. Physical examination, semen parameters and seminal reactive oxygen species were compared between the groups. Results: Of 156 fertile men 43 (24.3%) had clinical varicocele, which was grade 1 to 3 in 22, 11 and 10, respectively. The remaining 113 men (72.7%) had no varicocele. Infertile men had smaller testes, decreased semen parameters and higher seminal reactive oxygen species than the fertile groups. Testicular size, reactive oxygen species and semen parameters did not differ between fertile men with vs without varicocele. Fertile men with varicocele grade 3 had higher seminal reactive oxygen species than those with lower grade varicocele. As varicocele grade increased, seminal reactive oxygen species increased and sperm concentration decreased. Conclusions: Although fertile men have more efficient defense mechanisms to protect against the consequences of varicocele on testicular function, these mechanisms may not be sufficient in those with varicocele grade 3. Further research is needed to clarify whether they are at increased risk for future infertility.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Common bean, one of the most important legumes for human consumption, may have drastic reduction in yield due to anthracnose, a disease caused by the fungus Colletotrichum lindemuthianum. Rapid induction of the plant defense mechanisms is essential to establish an incompatible interaction with this pathogenic fungus. In this study, we evaluated spatial (leaves, epicotyls and hypocotyls) and temporal (24, 48, 72 and 96 hours after inoculation [HAI]) relative expression (RE) of 12 defense-related transcripts selected from previously developed ESTs libraries, during incompatible interaction between the resistant common bean genotype SEL 1308 and the avirulent anthracnose pathogen race 73, using real time quantitative RT-PCR (RT-qPCR) analysis. All selected transcripts, including the ones coding for pathogenesis-related (PR) proteins (PR1a, PR1b, PR2, and PR16a and PR16b) were differentially regulated upon pathogen inoculation. The expression levels of these transcripts were dependent on the tissue and time post inoculation. This study contributes to a better understanding of the kinetics of induced defenses against a fungal pathogen of common bean and may be used as a base line to study defenses against a broad range of pathogens including bacteria as well as non-host resistance. (C) 2012 Elsevier GmbH. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gravediggers have death as object of their work. Their activities are painful, physically and mental demanding, as well as unhealthy. Literature is scarce about this theme. The aim of this study is to evaluate gravediggers' work activities and health consequences. The methodological frame which guided this study was Dejours' psychic suffering and its association with the psychodynamic aspects of work. Data collection took place in April-May 2011 in one public and one private cemetery of Sao Paulo, Brazil. Four male workers, aged between 45 to 60 years old were interviewed. Their work activities were observed during a workday. Participants reported their life dreams, defense mechanisms and frustration. The discourse of gravediggers showed serious problems associated to physical and mental demands, public invisibility and/or social devaluation of work. The most important physical symptom was body pain. In spite this is a preliminary study, it was possible to raise a number of work stressors and health outcomes of gravediggers, an " invisible" worker of our society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Guapira graciliflora and Neea theifera are taxonomically related species of the tribe Pisoneae. Both species are found in the same environment, the Brazilian Cerrado, and therefore, are subjected to similar selective pressures. These species occur in oligotrophic environments, yet contain high concentrations of nitrogen in their leaves. The present study was carried out to investigate the ecological role of nitrogen in herbivory on these species. The differences in the N content, compositions of secondary N-metabolites, mechanical resistance, and water content between their leaves indicate that these species have different adaptations as defense mechanisms. In both species, their high nitrogen content seems to promote herbivory. The presence of secondary nitrogen metabolites does not prevent the species from suffering intense damage by herbivores on their early leaves. The herbivory rates observed were lower for mature leaves of both species than for young leaves. In G. graciliflora, nutritional content and leaf hardness are the most important variables correlated with reduction of herbivory rates, whereas in N. theifera, N compounds are also correlated with herbivory rates. Despite the differences in the strategies of these two species, they exhibit a similar efficiency of protection against natural enemies because their total herbivory rates are similar. The difference in their N defense allocation may imply benefits for survival under Cerrado conditions. We briefly discuss the oligotrophic habitat conditions of the studied plants and possible advantages of their strategies of N accumulation and metabolic uses. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Reactive oxygen species (ROS) are formed under natural physiological conditions and are thought to play an important role in many human diseases. A wide range of antioxidants are involved in cellular defense mechanisms against ROS, which can be generated in excess during stressful conditions, these include enzymes and non-enzymatic antioxidants. The aim of this study was to evaluate the antioxidant responses of mice to two diets control, commercial and the purified AIN 93 diet, commonly used in experiments with rodents. Results: Malondialdehyde (MDA) and hydrogen peroxide (H2O2) concentrations and superoxide dismutase (SOD) and glutathione reductase (GR) activities determined in the liver were lower in the group of mice fed with the AIN 93 diet, while catalase (CAT) activity was higher in the same group, when compared to the group fed on the commercial diet. Liver glutathione peroxidase (GSH-Px) activity was similar in the groups fed on either AIN 93 or the commercial diets. Two SOD isoforms, Mn-SODII and a Cu/Zn-SODV, were specifically reduced in the liver of the AIN 93 diet fed animals. Conclusions: The clear differences in antioxidant responses observed in the livers of mice fed on the two diets suggest that the macro- and micro-nutrient components with antioxidant properties, including vitamin E, can promote changes in the activity of enzymes involved in the removal of the ROS generated by cell metabolism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyphenols, including flavonoids and stilbenes, are an essential part of human diet and constitute one of the most abundant and ubiquitous group of plant secondary metabolites. The level of these compounds is inducible by stress or fungal attack, so attempts are being made to identify likely biotic and abiotic elicitors and to better understand the underlying mechanism. Resveratrol (3,5,4’-trihydroxystilbene), which belongs to the stilbene family, is a naturally occurring polyphenol, found in several fruits, vegetables and beverages including red wine. It is one of the most important plant polyphenols with proved benefic activity on animal health. In the last two decades, the potential protective effects of resveratrol against cardiovascular and neurodegenerative diseases, as well as the chemopreventive properties against cancer, have been largely investigated. The most important source of polyphenols and in particular resveratrol for human diet is grape (Vitis vinifera). Since stilbenes and flavonoids play a very important role in plant defence responses and enviromental interactions, and their effects on human health seem promising, the aim of the research of this Thesis was to study at different levels the activation and the regulation of their biosynthetic pathways after chitosan treatment. Moreover, the polyphenol production in grape cells and the optimisation of cultural conditions bioreactor scale-up, were also investigated. Cell suspensions were obtained from cv. Barbera (Vitis vinifera L.) petioles and were treated with a biotic elicitor, chitosan (50 μg/mL, dissolved in acetic acid) to promote phenylpropanoid metabolism. Chitosan is a D-glucosamine polymer from fungi cell wall and therefore mimes fungal pathogen attack. Liquid cultures have been monitored for 15 days, measuring cell number, cell viability, pH and grams of fresh weight. The endogenous and released amounts of 7 stilbenes (trans and cis isomers of resveratrol, piceid and resveratroloside, and piceatannol), gallic acid, 6 hydroxycinnamic acids (trans-cinnamic, p-coumaric, caffeic, ferulic, sinapic and chlorogenic acids), 5 catechines (catechin, epicatechin, epigallocatechin-gallate (EGCG), epigallocatechin and epicatechin-gallate) and other 5 flavonoids (chalcon, naringenin, kaempferol, quercetin and rutin) in cells and cultural medium, were measured by HPLC-DAD analysis and total anthocyanins were quantified by spectrophotometric analysis. Chitosan was effective in stimulating trans-resveratrol endogenous accumulation with a sharp peak at day 4 (exceeding acetic acid and water controls by 36% and 63%, respectively), while it did not influence the production of the cis-isomer. Compared to both water and acetic acid controls, chitosan decreased the release of both trans- and cis-resveratrol respect to controls. No effect was shown on the accumulation of single resveratrol mono-glucoside isomers, but considering their total amount, normalized for the relative water control, it was possible to evidence an increase in both accumulation and release of those compounds, in chitosan-treated cells, throughout the culture period and particularly during the second week. Many of the analysed flavonoids and hydroxycinnamic acids were not present or detectable in trace amounts. Catechin, epicatechin and epigallocatechin-gallate (EGCG) were detectable both inside the cells and in the culture media, but chitosan did not affect their amounts. On the contrary, total anthocyanins have been stimulated by chitosan and their level, from day 4 to 14, was about 2-fold higher than in both controls, confirming macroscopic observations that treated suspensions showed an intense brown-red color, from day 3 onwards. These elicitation results suggest that chitosan selectively up-regulates specific biosynthetic pathways, without modifying the general accumulation pattern of other flavonoids. Proteins have been extracted from cells at day 4 of culture (corresponding to the production peak of trans-resveratrol) and separated by bidimensional electrophoresis. The 73 proteins that showed a consistently changed amount between untreated, chitosan and acetic acid (chitosan solvent) treated cells, have been identified by mass spectrometry. Chitosan induced an increase in stilbene synthase (STS, the resveratrol biosynthetic enzyme), chalcone-flavanone isomerase (CHI, that switches the pathway from chalcones to flavones and anthocyanins), pathogenesis-related proteins 10 (PRs10, a large family of defence proteins), and a decrease in many proteins belonging to primary metabolisms. A train of six distinct spots of STS encoded by the same gene and increased by chitosan, was detected on the 2-D gels, and related to the different phosphorylation degree of STS spots. Northern blot analyses have been performed on RNA extracted from cells treated with chitosan and relative controls, using probes for STS, PAL (phenylalanine ammonia lyase, the first enzyme of the biosynthetic pathway), CHS (chalcone synthase, that shares with STS the same precursors), CHI and PR-10. The up-regulation of PAL, CHS and CHI transcript expression levels correlated with the accumulation of anthocyanins. The strong increase of different molecular weight PR-10 mRNAs, correlated with the 11 PR-10 protein spots identified in proteomic analyses. The sudden decrease in trans-resveratrol endogenous accumulation after day 4 of culture, could be simply explained by the diminished resveratrol biosynthetic activity due to the lower amount of biosynthetic enzymes. This might be indirectly demonstrated by northern blot expression analyses, that showed lower levels of phenylalanine ammonia lyase (PAL) and stilbene synthase (STS) mRNAs starting from day 4. Other possible explanations could be a resveratrol oxidation process and/or the formation of other different mono-, di-glucosides and resveratrol oligomers such as viniferins. Immunolocalisation experiments performed on grape protoplasts and the subsequent analyses by confocal microscope, showed that STS, and therefore the resveratrol synthetic site, is mostly associated to intracellular membranes close to the cytosolic side of plasma membrane and in a smaller amount is localized in the cytosol. STS seemed not to be present inside vacuole and nucleus. There were no differences in the STS intracellular localisation between the different treatments. Since it was shown that stilbenes are largely released in the culture medium and that STS is a soluble protein, a possible interaction of STS with a plasma membrane transporter responsible for the extrusion of stilbenes in the culture medium, might be hypothesized. Proteomic analyses performed on subcellular fractions identified in the microsomial fraction 5 proteins taking part in channel complexes or associated with channels, that significantly changed their amount after chitosan treatment. In soluble and membrane fractions respectively 3 and 4 STS and 6 and 3 PR-10 have been identified. Proteomic results obtained from subcellular fractions substantially confirmed previous result obtained from total cell protein extracts and added more information about protein localisation and co-localisation. The interesting results obtained on Barbera cell cultures with the aim to increase polyphenol (especially stilbenes) production, have encouraged scale up tests in 1 litre bioreactors. The first trial fermentation was performed in parallel with a normal time-course in 20 mL flasks, showing that the scale-up (bigger volume and different conditions) process influenced in a very relevant way stilbenes production. In order to optimise culture parameters such as medium sucrose amount, fermentation length and inoculum cell concentration, few other fermentations were performed. Chitosan treatments were also performed. The modification of each parameter brought relevant variations in stilbenes and catechins levels, so that the production of a certain compound (or class of compounds) could be hypothetically promoted by modulating one or more culture parameters. For example the catechin yield could be improved by increasing sucrose content and the time of fermentation. The best results in stilbene yield were obtained in a 800 mL fermentation inoculated with 10.8 grams of cells and supplemented with chitosan. The culture was fed with MS medium added with 30 g/L sucrose, 25 μg/mL rifampicin and 50 μg/mL of chitosan, and was maintained at 24°C, stirred by marine impeller at 100 rpm and supplied of air at 0.16 L/min rate. Resveratroloside was the stilbene present in the larger amount, 3-5 times more than resveratrol. Because resveratrol glucosides are similarly active and more stable than free resveratrol, their production using a bioreactor could be a great advantage in an hypothetical industrial process. In my bioreactor tests, stilbenes were mainly released in the culture medium (60-80% of the total) and this fact could be another advantage for industrial applications, because it allows recovering the products directly from the culture medium without stopping the fermentation and/or killing the cells. In my best cultural conditions, it was possible to obtain 3.95 mg/L of stilbenes at day 4 (maximum resveratrol accumulation) and 5.13 mg/L at day 14 (maximum resveratroloside production). In conclusion, chitosan effect in inducing Vitis vinifera defense mechanisms can be related to its ability to increase the intracellular content of a large spectrum of antioxidants, and in particular of resveratrol, its derivates and anthocyanins. Its effect can be observed at transcriptional, proteomic (variation of soluble and membrane protein amounts) and metabolic (polyphenols production) level. The chitosan ability to elicit specific plant matabolisms can be useful to produce large quantities of antioxidant compounds from cell culture in bioreactor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Self-incompatibility (SI) systems have evolved in many flowering plants to prevent self-fertilization and thus promote outbreeding. Pear and apple, as many of the species belonging to the Rosaceae, exhibit RNase-mediated gametophytic self-incompatibility, a widespread system carried also by the Solanaceae and Plantaginaceae. Pear orchards must for this reason contain at least two different cultivars that pollenize each other; to guarantee an efficient cross-pollination, they should have overlapping flowering periods and must be genetically compatible. This compatibility is determined by the S-locus, containing at least two genes encoding for a female (pistil) and a male (pollen) determinant. The female determinant in the Rosaceae, Solanaceae and Plantaginaceae system is a stylar glycoprotein with ribonuclease activity (S-RNase), that acts as a specific cytotoxin in incompatible pollen tubes degrading cellular RNAs. Since its identification, the S-RNase gene has been intensively studied and the sequences of a large number of alleles are available in online databases. On the contrary, the male determinant has been only recently identified as a pollen-expressed protein containing a F-box motif, called S-Locus F-box (abbreviated SLF or SFB). Since F-box proteins are best known for their participation to the SCF (Skp1 - Cullin - F-box) E3 ubiquitine ligase enzymatic complex, that is involved in protein degradation through the 26S proteasome pathway, the male determinant is supposed to act mediating the ubiquitination of the S-RNases, targeting them for the degradation in compatible pollen tubes. Attempts to clone SLF/SFB genes in the Pyrinae produced no results until very recently; in apple, the use of genomic libraries allowed the detection of two F-box genes linked to each S haplotype, called SFBB (S-locus F-Box Brothers). In Japanese pear, three SFBB genes linked to each haplotype were cloned from pollen cDNA. The SFBB genes exhibit S haplotype-specific sequence divergence and pollen-specific expression; their multiplicity is a feature whose interpretation is unclear: it has been hypothesized that all of them participate in the S-specific interaction with the RNase, but it is also possible that only one of them is involved in this function. Moreover, even if the S locus male and female determinants are the only responsible for the specificity of the pollen-pistil recognition, many other factors are supposed to play a role in GSI; these are not linked to the S locus and act in a S-haplotype independent manner. They can have a function in regulating the expression of S determinants (group 1 factors), modulating their activity (group 2) or acting downstream, in the accomplishment of the reaction of acceptance or rejection of the pollen tube (group 3). This study was aimed to the elucidation of the molecular mechanism of GSI in European pear (Pyrus communis) as well as in the other Pyrinae; it was divided in two parts, the first focusing on the characterization of male determinants, and the second on factors external to the S locus. The research of S locus F-box genes was primarily aimed to the identification of such genes in European pear, for which sequence data are still not available; moreover, it allowed also to investigate about the S locus structure in the Pyrinae. The analysis was carried out on a pool of varieties of the three species Pyrus communis (European pear), Pyrus pyrifolia (Japanese pear), and Malus × domestica (apple); varieties carrying S haplotypes whose RNases are highly similar were chosen, in order to check whether or not the same level of similarity is maintained also between the male determinants. A total of 82 sequences was obtained, 47 of which represent the first S-locus F-box genes sequenced from European pear. The sequence data strongly support the hypothesis that the S locus structure is conserved among the three species, and presumably among all the Pyrinae; at least five genes have homologs in the analysed S haplotypes, but the number of F-box genes surrounding the S-RNase could be even greater. The high level of sequence divergence and the similarity between alleles linked to highly conserved RNases, suggest a shared ancestral polymorphism also for the F-box genes. The F-box genes identified in European pear were mapped on a segregating population of 91 individuals from the cross 'Abbé Fétel' × 'Max Red Bartlett'. All the genes were placed on the linkage group 17, where the S locus has been placed both in pear and apple maps, and resulted strongly associated to the S-RNase gene. The linkage with the RNase was perfect for some of the F-box genes, while for others very rare single recombination events were identified. The second part of this study was focused on the research of other genes involved in the SI response in pear; it was aimed on one side to the identification of genes differentially expressed in compatible and incompatible crosses, and on the other to the cloning and characterization of the transglutaminase (TGase) gene, whose role may be crucial in pollen rejection. For the identification of differentially expressed genes, controlled pollinations were carried out in four combinations (self pollination, incompatible, half-compatible and fully compatible cross-pollination); expression profiles were compared through cDNA-AFLP. 28 fragments displaying an expression pattern related to compatibility or incompatibility were identified, cloned and sequenced; the sequence analysis allowed to assign a putative annotation to a part of them. The identified genes are involved in very different cellular processes or in defense mechanisms, suggesting a very complex change in gene expression following the pollen/pistil recognition. The pool of genes identified with this technique offers a good basis for further study toward a better understanding of how the SI response is carried out. Among the factors involved in SI response, moreover, an important role may be played by transglutaminase (TGase), an enzyme involved both in post-translational protein modification and in protein cross-linking. The TGase activity detected in pear styles was significantly higher when pollinated in incompatible combinations than in compatible ones, suggesting a role of this enzyme in the abnormal cytoskeletal reorganization observed during pollen rejection reaction. The aim of this part of the work was thus to identify and clone the pear TGase gene; the PCR amplification of fragments of this gene was achieved using primers realized on the alignment between the Arabidopsis TGase gene sequence and several apple EST fragments; the full-length coding sequence of the pear TGase gene was then cloned from cDNA, and provided a precious tool for further study of the in vitro and in vivo action of this enzyme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Es wurde ein genomischer DNA-Array der Modellpflanze Arabidopsis thaliana mit einer 13.800 EST-Klone umfassenden cDNA-Bibliothek entwickelt und in der Genexpressionsanalyse der pflanzlichen Pathogenabwehr eingesetzt. Mittels PCR-Amplifikation sind 13.000 PCR-Produkte der cDNA-Fragmente hergestellt worden, mit denen 66 genomische Arabidopsis-Arrays auf Nylon und Polypropylen als Trägermaterial hergestellt werden konnten. Die Validierung mit Fluoreszenz- und Radiaktivhybridisierung sowie der Vergleich von drei Normalisierungsmethoden führte zu reproduzierbaren Ergebnissen bei hohem Korrelationskoeffizienten. Die etablierte DNA-Array-Technologie wurde zur Genexpressionsanalyse der pathogeninduzierten Abwehrmechanismen der Pflanze Arabidopsis thaliana in den ersten 24 Stunden nach Infektion mit dem avirulenten Bakterium Pseudomonas syringae pv. tomato eingesetzt. In einer Auswahl von 75 Genen der Stoffwechselwege Glycolyse, Citrat-Cyclus, Pentosephosphat-Cyclus und Glyoxylatmetabolismus konnte für 25 % der Gene, im Shikimat-, Tryptophan- und Phenylpropanoidsyntheseweg für 60 % der Gene eine erhöhte Transkriptionsrate nachgewiesen werden. Die Ergebnisse dieser Arbeit stimmen mit experimentellen Daten verschiedener unabhängiger Studien zur pflanzlichen Pathogenantwort überein. Darüberhinaus sind erstmals Transkriptionsprofile von bisher auf Transkriptionsebene nicht untersuchten Genen erstellt worden. Diese Ergebnisse bestätigen die transkriptionelle Aktivierung ganzer Stoffwechselwege und gewähren erstmals einen Einblick in die koordinierte differentielle Transkription ganzer Stoffwechselwege während der Pathogenabwehr.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pharmaceutical residues contaminate aquatic ecosystems as a result of their widespread human and veterinary usage. Since continuously released and not efficiently removed, certain pharmaceuticals exhibit pseudo-persistence thus generating concerns for the health of aquatic wildlife. This work aimed at assessing on mussels Mytilus galloprovincialis, under laboratory conditions, the effects of three pharmaceuticals, carbamazepine (antiepileptic), propranolol (β-blocker) and oxytetracycline (antibiotic), to evaluate if the human-based mode of action of these molecules is conserved in invertebrates. Furthermore, in the framework of the European MEECE Programme, mussels were exposed to oxytetracycline and copper at increasing temperatures, simulating variations due to climate changes. The effects of these compounds were assessed evaluating a battery of biomarkers, the expression of HSP70 proteins and changes in cAMP-related parameters. A decrease in lysosomal membrane stability, induction of oxidative stress, alterations of cAMP-dependent pathway and the induction of defense mechanisms were observed indicating the development of a stress syndrome, and a worsening in mussels health status. Data obtained in MEECE Programme confirmed that the toxicity of substances can be enhanced following changes in temperature. The alterations observed were obtained after exposure to pharmaceuticals at concentrations sometimes lower than those detected in the aquatic environment. Hence, further research is advisable regarding subtle effects of pharmaceuticals on non-target organisms. Furthermore, results obtained during a research stay in the laboratories of Cádiz University (Spain) are presented. The project aimed at measuring possible effects of polluted sediments in Algeciras Bay (Spain) and in Cádiz Bay, by assessing different physiological parameters in caged crabs Carcinus maenas and clams Ruditapes decussatus exposed in situ for 28 days. The neutral red retention assay was adapted to these species and proved to be a sensitive screening tool for the assessment of sediment quality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lung transplantation is a widely accepted therapeutic option for end stage lung disease. Clinical outcome is yet challenged by primary graft failure responsible for the majority of the early mortality, by chronic allograft dysfunction and chronic rejection accounting for more than 30% of deaths after the third postoperative year. Pulmonary surfactant proteins (SP) A, B, C and D are one of the first host defense mechanisms the lung can mount. SP-A in particular, produced by the type II pneumocytes, is active in the innate and adaptive immune system being an opsonin, but also regulating the macrophage and lymphocyte response. The main hypothesis for this project is that pulmonary surfactant protein A polymorphism may determine the early and long term lung allograft survival. Of note SP-A biologic activity seems to be genetically determined and SP-A polymorphisms have been associated to various lung disease. The two SP-A genes SP-A1 and SP-A2 have several polymorphisms within the coding region, SP-A1 (6A, 6A2-20), and SP-A2(1A, 1A0-13). The SP-A gene expression is regulated by cAMP, TTF-1 and glucocorticoids. In vitro studies have indicated that SP-A1 and SP-A2 gene variants may have a variable response to glucocorticoids. We proposed to determine if SP-A gene polymorphism predicts primary graft dysfunction and/or chronic lung allograft dysfunction and if SP-A may serve as a biomarker of lung allograft dysfunction. We also proposed to study the interaction between immunosuppressive drugs and SP-A expression and determine whether this is dependent on SP-A polymorphisms. This study will generate novel information improving our understanding of lung allograft dysfunction. It is conceivable that the information will stimulate the interest for a multi centre study to investigate if SP-A polymorphism may be integrated in the donor lung selection criteria and/or to implement post transplant tailored immunosuppression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

First both life stages of Leishmania major (L. major) FEBNI parasites, promastigotes as well as amastigotes, were characterized. We found that the virulence marker GP63 and cysteine peptidase b (Cpb) were higher expressed by axenic amastigotes as compared to promastigotes. In addition to the L. major FEBNI strain, we applied and successfully modified our novel in vitro method to generate axenic amastigotes of the L. major Friedlin and 5ASKH strains. Interestingly, these L. major strains needed another temperature to be transferred into amastigotes in the axenic culture system. Investigating apoptosis mechanisms in both parasite life stages of L. major FEBNI we found both ROS dependent and independent cell death mechanisms. Focusing on promastigote and amastigote interaction with pro-inflammatory (MF I) and anti-inflammatory (MF II) macrophages we found amastigotes to be more infective as compared to promastigotes. Moreover, we could demonstrate that pro-inflammatory MF I were less susceptible to infection than anti-inflammatory MF II. Finally we investigated parasite stage-specific responses of MF I + II and their defense mechanisms against L. major. Using knockdown techniques for primary human macrophages we identified a new mechanism enabling intracellular killing of promastigotes inside MF I. This mechanism depends on the antimicrobial molecule cathelicidin (LL-37).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Gram-positive bacteria Enterococcus hirae, Lactococcus lactis, and Bacillus subtilis have received wide attention in the study of copper homeostasis. Consequently, copper extrusion by ATPases, gene regulation by copper, and intracellular copper chaperoning are understood in some detail. This has provided profound insight into basic principles of how organisms handle copper. It also emerged that many bacterial species may not require copper for life, making copper homeostatic systems pure defense mechanisms. Structural work on copper homeostatic proteins has given insight into copper coordination and bonding and has started to give molecular insight into copper handling in biological systems. Finally, recent biochemical work has shed new light on the mechanism of copper toxicity, which may not primarily be mediated by reactive oxygen radicals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The airway epithelium acts as a frontline defense against respiratory viruses, not only as a physical barrier and through the mucociliary apparatus but also through its immunological functions. It initiates multiple innate and adaptive immune mechanisms which are crucial for efficient antiviral responses. The interaction between respiratory viruses and airway epithelial cells results in production of antiviral substances, including type I and III interferons, lactoferrin, β-defensins, and nitric oxide, and also in production of cytokines and chemokines, which recruit inflammatory cells and influence adaptive immunity. These defense mechanisms usually result in rapid virus clearance. However, respiratory viruses elaborate strategies to evade antiviral mechanisms and immune responses. They may disrupt epithelial integrity through cytotoxic effects, increasing paracellular permeability and damaging epithelial repair mechanisms. In addition, they can interfere with immune responses by blocking interferon pathways and by subverting protective inflammatory responses toward detrimental ones. Finally, by inducing overt mucus secretion and mucostasis and by paving the way for bacterial infections, they favor lung damage and further impair host antiviral mechanisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rhinovirus (RV)-induced pulmonary exacerbations are common in cystic fibrosis (CF) and have been associated with impaired virus clearance by the CF airway epithelium in vitro. Here, we assess in vivo the association of RV prevalence and load with antiviral defense mechanisms, airway inflammation, and lung function parameters in children with CF compared with a control group and children with other chronic respiratory diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the resolution of inflammatory responses, neutrophils rapidly undergo apoptosis. We describe a new proapoptotic pathway in which cathepsin D directly activates caspase-8. Cathepsin D is released from azurophilic granules in neutrophils in a caspase-independent but reactive oxygen species-dependent manner. Under inflammatory conditions, the translocation of cathepsin D in the cytosol is blocked. Pharmacological or genetic inhibition of cathepsin D resulted in delayed caspase activation and reduced neutrophil apoptosis. Cathepsin D deficiency or lack of its translocation in the cytosol prolongs innate immune responses in experimental bacterial infection and in septic shock. Thus, we identified a new function of azurophilic granules that is in addition to their role in bacterial defense mechanisms: to regulate the life span of neutrophils and, therefore, the duration of innate immune responses through the release of cathepsin D.