997 resultados para Damped Quantum-systems


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Intracavity and external third order correlations in the damped nondegenerate parametric oscillator are calculated for quantum mechanics and stochastic electrodynamics (SED), a semiclassical theory. The two theories yield greatly different results, with the correlations of quantum mechanics being cubic in the system's nonlinear coupling constant and those of SED being linear in the same constant. In particular, differences between the two theories are present in at least a mesoscopic regime. They also exist when realistic damping is included. Such differences illustrate distinctions between quantum mechanics and a hidden variable theory for continuous variables.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two integrable quantum spin ladder systems will be introduced associated with the fundamental su(2 \2) solution of the Yang-Baxter equation. The first model is a generalized quantum Ising system with Ising rung interactions. In the second model the addition of extra interactions allows us to impose Heisenberg rung interactions without violating integrability. The existence of a Bethe ansatz solution for both models allows us to investigate the elementary excitations for antiferromagnetic rung couplings. We find that the first model does not show a gap whilst in the second case there is a gap for all positive values of the rung coupling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We generalize the basic concepts of the positive-P and Wigner representations to unstable quantum-optical systems that are based on nonorthogonal quasimodes. This lays the foundation for a quantum description of such systems, such as, for example an unstable cavity laser. We compare both representations by calculating the tunneling times for an unstable resonator optical parametric oscillator.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

El procedimiento de revertir la dinámica colectiva (diablillo de Loschmidt apresurado) mediante un pulso de radio frecuencia, permite generar un Eco de Loschmidt, es decir la refocalización de una excitación localizada. Alternativamente, en acústica es posible implementar un Espejo de Reversión Temporal, que consiste en la progresiva inyección de una débil excitación ultrasónica en la periferia de un sistema, para construir una excitación que se propaga "hacia atrás". Así, podemos afirmar que es posible revertir y controlar la dinámica. Sin embargo, aún no se posee una comprensión detallada de los mecanismos que gobiernan estos procedimientos. Este proyecto busca responder las preguntas que posibilitan esta comprensión.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Naturwiss., Diss., 2009

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Positive-operator-valued measurements on a finite number of N identically prepared systems of arbitrary spin J are discussed. Pure states are characterized in terms of Bloch-like vectors restricted by a SU(2J+1) covariant constraint. This representation allows for a simple description of the equations to be fulfilled by optimal measurements. We explicitly find the minimal positive-operator-valued measurement for the N=2 case, a rigorous bound for N=3, and set up the analysis for arbitrary N.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider the effects of quantum fluctuations in mean-field quantum spin-glass models with pairwise interactions. We examine the nature of the quantum glass transition at zero temperature in a transverse field. In models (such as the random orthogonal model) where the classical phase transition is discontinuous an analysis using the static approximation reveals that the transition becomes continuous at zero temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this Thesis I discuss the exact dynamics of simple non-Markovian systems. I focus on fundamental questions at the core of non-Markovian theory and investigate the dynamics of quantum correlations under non-Markovian decoherence. In the first context I present the connection between two different non-Markovian approaches, and compare two distinct definitions of non-Markovianity. The general aim is to characterize in exemplary cases which part of the environment is responsible for the feedback of information typical of non- Markovian dynamics. I also show how such a feedback of information is not always described by certain types of master equations commonly used to tackle non-Markovian dynamics. In the second context I characterize the dynamics of two qubits in a common non-Markovian reservoir, and introduce a new dynamical effect in a wellknown model, i.e., two qubits under depolarizing channels. In the first model the exact solution of the dynamics is found, and the entanglement behavior is extensively studied. The non-Markovianity of the reservoir and reservoirmediated-interaction between the qubits cause non-trivial dynamical features. The dynamical interplay between different types of correlations is also investigated. In the second model the study of quantum and classical correlations demonstrates the existence of a new effect: the sudden transition between classical and quantum decoherence. This phenomenon involves the complete preservation of the initial quantum correlations for long intervals of time of the order of the relaxation time of the system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider the effects of quantum fluctuations in mean-field quantum spin-glass models with pairwise interactions. We examine the nature of the quantum glass transition at zero temperature in a transverse field. In models (such as the random orthogonal model) where the classical phase transition is discontinuous an analysis using the static approximation reveals that the transition becomes continuous at zero temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study and compare the information loss of a large class of Gaussian bipartite systems. It includes the usual Caldeira-Leggett-type model as well as Anosov models ( parametric oscillators, the inverted oscillator environment, etc), which exhibit instability, one of the most important characteristics of chaotic systems. We establish a rigorous connection between the quantum Lyapunov exponents and coherence loss, and show that in the case of unstable environments coherence loss is completely determined by the upper quantum Lyapunov exponent, a behavior which is more universal than that of the Caldeira-Leggett-type model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We return to the description of the damped harmonic oscillator with an assessment of previous works, in particular the Bateman-Caldirola-Kanai model and a new model proposed by one of the authors. We argue the latter has better high energy behavior and is connected to existing open-systems approaches. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We discuss the possibility of implementing a universal quantum XOR gate by using two coupled quantum dots subject to external magnetic fields that are parallel and slightly different. We consider this system in two different field configurations. In the first case, parallel external fields with the intensity difference at each spin being proportional to the time-dependent interaction between the spins. A general exact solution describing this system is presented and analyzed to adjust field parameters. Then we consider parallel fields with intensity difference at each spin being constant and the interaction between the spins switching on and off adiabatically. In both cases we adjust characteristics of the external fields (their intensities and duration) in order to have the parallel pulse adequate for constructing the XOR gate. In order to provide a complete theoretical description of all the cases, we derive relations between the spin interaction, the inter-dot distance, and the external field. (C) 2008 WILEYNCH Verlag GmbH & Co. KGaA. Weinheim.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The energy states of the confined harmonic oscillator and the Hulthén potentials are evaluated using the Variational Method associated to Supersymmetric Quantum Mechanics.