908 resultados para DRUG-DELIVERY
Resumo:
This paper briefly reviews the recent progress in using layered double hydroxide (LDH) nanomaterials as cellular delivery agents. The advantages of LDHs as cellular delivery agents are summarized, and the processes of interaction/de-intercalation of anionic drugs (genes) into/from LDH nanoparticles are discussed. Then the cellular delivery of LDH-drug (gene) nanohybrids and subsequent intracellular processes are presumably proposed. At the end, some challenges and remarks for efficient delivery of drugs (genes) via LDH nanoparticles are provided to the best of our knowledge.
Resumo:
We investigate the gas-particle dynamics of a device designed for biological pre-clinical experiments. The device uses transonic/supersonic gas flow to accelerate microparticles such that they penetrate the outer skin layers. By using a shock tube coupled to a correctly expanded nozzle, a quasi-one-dimensional, quasi-steady flow (QSF) is produced to uniformly accelerate the microparticles. The system utilises a microparticle cassette (a diaphragm sealed container) that incorporates a jet mixing mechanism to stir the particles prior to diaphragm rupture. Pressure measurements reveal that a QSF exit period - suitable for uniformly accelerating microparticles - exists between 155 and 220 mus after diaphragm rupture. Immediately preceding the QSF period, a starting process secondary shock was shown to form with its (x,t) trajectory comparing well to theoretical estimates. To characterise the microparticle, flow particle image velocimetry experiments were conducted at the nozzle exit, using particle payloads with varying diameter (2.7-48 mu m), density (600-16,800 kg/m(3)) and mass (0.25-10 mg). The resultant microparticle velocities were temporally uniform. The experiments also show that the starting process does not significantly influence the microparticle nozzle exit velocities. The velocity distribution across the nozzle exit was also uniform for the majority of microparticle types tested. For payload masses typically used in pre-clinical drug and vaccine applications (
Resumo:
The use of topical pharmaceutical formulations is increasingly popular in veterinary medicine. A potential concern is that not all formulations are registered for the intended species, yet current knowledge strongly suggests that simple extrapolation of transdermal drug pharmacokinetics and pharmacodynamics between species, including humans, cannot be done. In this review, an overview is provided of the underlying basic principles determining the movement of topically applied molecules into and through the skin. Various factors that may affect transdermal drug penetration between species, between individuals of a particular species and regional differences in an individual are also discussed. A good understanding of the basic principles of transdermal drug delivery is critical to avoid adverse effects or lack of efficacy when applying topical formulations in veterinary medicine. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Solid dispersions can be used to improve dissolution of poorly soluble drugs and PVP is a common polymeric carrier in such systems. The mechanisms controlling release of drug from solid dispersions are not fully understood and proposed theories are dependent on an understanding of the dissolution behaviour of both components of the dispersion. This study uses microviscometry to measure small changes in the viscosity of the dissolution medium as the polymer dissolves from ibuprofen-PVP solid dispersions. The microviscometer determines the dynamic and kinematic viscosity of liquids based on the rolling/falling ball principle. Using a standard USP dissolution apparatus, the dissolution of the polymer from the solid dispersion was easily measured alongside drug release. Drug release was found to closely follow polymer dissolution at the molecular weights and ratios used. The combination of sensitivity and ease of use make microviscometry a valuable technique for the elucidation of mechanisms governing drug release from polymeric delivery systems. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Helicobacter pylori is one of the most common pathogenic bacterial infections, colonising an estimated half of all humans. It is associated with the development of serious gastroduodenal disease - including peptic ulcers, gastric lymphoma and acute chronic gastritis. Current recommended regimes are not wholly effective and patient compliance, side-effects and bacterial resistance can be problematic. Drug delivery to the site of residence in the gastric mucosa may improve efficacy of the current and emerging treatments. Gastric retentive delivery systems potentially allow increased penetration of the mucus layer and therefore increased drug concentration at the site of action. Proposed gastric retentive systems for the enhancement of local drug delivery include floating systems, expandable or swellable systems and bioadhesive systems. Generally, problems with these formulations are lack of specificity, limited to mucus turnover or failure to persist in the stomach. Gastric mucoadhesive systems are hailed as a promising technology to address this issue, penetrating the mucus layer and prolonging activity at the mucus-epithelial interface. This review appraises gastroretentive delivery strategies specifically with regard to their application as a delivery system to target Helicobacter. As drug-resistant strains emerge, the development of a vaccine to eradicate and prevent reinfection is an attractive proposition. Proposed prophylactic and therapeutic vaccines have been delivered using a number of mucosal routes using viral and non-viral vectors. The delivery form, inclusion of adjuvants, and delivery regime will influence the immune response generated. © 2005 Bentham Science Publishers Ltd.
Resumo:
Powders for inhalation are traditionally prepared using a destructive micronization process such as jet milling to reduce the particle size of the drug to 2-5 μm. The resultant particles are typically highly cohesive and display poor aerosolization properties, necessitating the addition of a coarse carrier particle to the micronized drug to improve powder flowability. Spray-drying technology offers an alternative, constructive particle production technique to the traditional destructive approach, which may be particularly useful when processing biotechnology products that could be adversely affected by high-energy micronization processes. Advantages of spray drying include the ability to incorporate a wide range of excipients into the spray-drying feedstock, which could modify the aerosolization and stability characterizations of the resultant powders, as well as modify the drug release and absorption profiles following inhalation. This review discusses some of the reasons why pulmonary drug delivery is becoming an increasingly popular route of administration and describes the various investigations that have been undertaken in the preparation of spray-dried powders for pulmonary drug delivery. © 2007 by Begell House, Inc.
Resumo:
In this study, the amino acids arginine, aspartic acid, leucine, phenylalanine and threonine were investigated as 'dispersibility enhancers' in spray-dried powders for inhalation. Parameters such as spray-dried yield, tapped density, and Carr's Index were not predictive of aerosolisation performance. In addition, whilst the majority of amino acid-modified powders displayed suitable particle size distribution for pulmonary administration and potentially favourable low moisture content, in vitro particle deposition was only enhanced for the leucine-modified powder. In summary, leucine can be used to enhance the dispersibility and aerosolisation properties of spray-dried powders for pulmonary drug delivery. © 2007 Elsevier B.V. All rights reserved.