223 resultados para DNS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conditional moment closure (CMC) method has been successfully applied to various non-premixed combustion systems in the past, but its application to premixed flames is not fully tested and validated. The main difficulty is associated with the modeling of conditional scalar dissipation rate of the conditioning scalar, the progress variable. A simple algebraic model for the conditional dissipation rate is validated using DNS results of a V-flame. This model along with the standard k- turbulence modeling is used in computations of stoichiometric pilot stabilized Bunsen flames using the RANS-CMC method. A first-order closure is used for the conditional mean reaction rate. The computed non reacting and reacting scalars are in reasonable agreement with the experimental measurements and are consistent with earlier computations using flamelets and transported PDF methods. Sensitivity to chemical kinetic mechanism is also assessed. The results suggest that the CMC may be applied across the regimes of premixed combustion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A strategy to extract turbulence structures from direct numerical simulation (DNS) data is described along with a systematic analysis of geometry and spatial distribution of the educed structures. A DNS dataset of decaying homogeneous isotropic turbulence at Reynolds number Reλ = 141 is considered. A bandpass filtering procedure is shown to be effective in extracting enstrophy and dissipation structures with their smallest scales matching the filter width, L. The geometry of these educed structures is characterized and classified through the use of two non-dimensional quantities, planarity' and filamentarity', obtained using the Minkowski functionals. The planarity increases gradually by a small amount as L is decreased, and its narrow variation suggests a nearly circular cross-section for the educed structures. The filamentarity increases significantly as L decreases demonstrating that the educed structures become progressively more tubular. An analysis of the preferential alignment between the filtered strain and vorticity fields reveals that vortical structures of a given scale L are most likely to align with the largest extensional strain at a scale 3-5 times larger than L. This is consistent with the classical energy cascade picture, in which vortices of a given scale are stretched by and absorb energy from structures of a somewhat larger scale. The spatial distribution of the educed structures shows that the enstrophy structures at the 5η scale (where η is the Kolmogorov scale) are more concentrated near the ones that are 3-5 times larger, which gives further support to the classical picture. Finally, it is shown by analysing the volume fraction of the educed enstrophy structures that there is a tendency for them to cluster around a larger structure or clusters of larger structures. Copyright © 2012 Cambridge University Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modeling of the joint probability density function of the mixture fraction and progress variable with a given covariance value is studied. This modeling is validated using experimental and direct numerical simulation (DNS) data. A very good agreement with experimental data of turbulent stratified flames and DNS data of a lifted hydrogen jet flame is obtained. The effect of using this joint pdf modeling to calculate the mean reaction rate with a flamelet closure in Reynolds averaged Navier-Stokes (RANS) calculation of stratified flames is studied. The covariance effect is observed to be large within the flame brush. The results obtained from RANS calculations using this modeling for stratified jet- and rod-stabilized V-flames are discussed and compared to the measurements as a posteriori validation for the joint probability density function model with the flamelet closure. The agreement between the computed and measured values of flame and turbulence quantities is found to be good. © 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A direct numerical simulation (DNS) database of freely propagating statistically planar turbulent premixed flames with a range of different turbulent Reynolds numbers has been used to assess the performance of algebraic flame surface density (FSD) models based on a fractal representation of the flame wrinkling factor. The turbulent Reynolds number Ret has been varied by modifying the Karlovitz number Ka and the Damköhler number Da independently of each other in such a way that the flames remain within the thin reaction zones regime. It has been found that the turbulent Reynolds number and the Karlovitz number both have a significant influence on the fractal dimension, which is found to increase with increasing Ret and Ka before reaching an asymptotic value for large values of Ret and Ka. A parameterisation of the fractal dimension is presented in which the effects of the Reynolds and the Karlovitz numbers are explicitly taken into account. By contrast, the inner cut-off scale normalised by the Zel'dovich flame thickness ηi/δz does not exhibit any significant dependence on Ret for the cases considered here. The performance of several algebraic FSD models has been assessed based on various criteria. Most of the algebraic models show a deterioration in performance with increasing the LES filter width. © 2012 Mohit Katragadda et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of turbulent Reynolds number, Ret, on the transport of scalar dissipation rate of reaction progress variable in the context of Reynolds averaged Navier-Stokes simulations have been analyzed using three-dimensional simplified chemistry-based direct numerical simulation (DNS) data of freely propagating turbulent premixed flames with different values of Ret. Scaling arguments have been used to explain the effects of Ret on the turbulent transport, scalar-turbulence interaction, and the combined reaction and molecular dissipation terms. Suitable modifications to the models for these terms have been proposed to account for Ret effects, and the model parameters include explicit Ret dependence. These expressions approach expected asymptotic limits for large values of Ret. However, turbulent Reynolds number Ret does not seem to have any major effects on the modeling of the term arising from density variation. Copyright © Taylor and Francis Group, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is strong evidence that the transport processes in the buffer region of wall-bounded turbulence are common across various flow configurations, even in the embryonic turbulence in transition (Park et al., Phys. Fl. 24). We use this premise to develop off-wall boundary conditions for turbulent simulations. Boundary conditions are constructed from DNS databases using periodic minimal flow units and reduced order modeling. The DNS data was taken from a channel at Reτ=400 and a zero-pressure gradient transitional boundary layer (Sayadi et al., submitted to J. Fluid Mech.). Both types of boundary conditions were first tested on a DNS of the core of the channel flow with the aim of extending their application to LES and to spatially evolving flows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The turbulent drag reduction due to riblets is a function of their size and, for different configurations, collapses well with a length scale l+g=(A+g)1/2, based in the groove cross-section Ag. The initially linear drag reduction breaks down for l+g≈11, which agrees in our DNS with the previously reported appearance of quasi-two-dimensional spanwise rollers immediately above the riblets. They are similar to those found over porous surfaces and plant canopies, and can be traced to a Kelvin-Helmholtz-like instability associated with the relaxation of the impermeability condition for the wall-normal velocity. The extra Reynolds stress associated with them accounts quantitatively for the drag degradation. An inviscid model for the instability confirms its nature, agreeing well with the observed perturbation wavelengths and shapes. The onset of the instability is determined by a length scale L+w that, for conventional riblet geometries, is proportional to l+g. The instability onset, L+w≥4, corresponds to the empirical breakdown point l+g≈11.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When a premixed flame is placed within a duct, acoustic waves induce velocity perturbations at the flame's base. These travel down the flame, distorting its surface and modulating its heat release. This can induce self-sustained thermoacoustic oscillations. Although the phase speed of these perturbations is often assumed to equal the mean flow speed, experiments conducted in other studies and Direct Numerical Simulation (DNS) conducted in this study show that it varies with the acoustic frequency. In this paper, we examine how these variations affect the nonlinear thermoacoustic behaviour. We model the heat release with a nonlinear kinematic G-equation, in which the velocity perturbation is modelled on DNS results. The acoustics are governed by linearised momentum and energy equations. We calculate the flame describing function (FDF) using harmonic forcing at several frequencies and amplitudes. Then we calculate thermoacoustic limit cycles and explain their existence and stability by examining the amplitude-dependence of the gain and phase of the FDF. We find that, when the phase speed equals the mean flow speed, the system has only one stable state. When the phase speed does not equal the mean flow speed, however, the system supports multiple limit cycles because the phase of the FDF changes significantly with oscillation amplitude. This shows that the phase speed of velocity perturbations has a strong influence on the nonlinear thermoacoustic behaviour of ducted premixed flames. © 2013 The Combustion Institute.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNS data of a laboratory-scale turbulent lifted hydrogen jet flame has been analyzed to show that this flame has mixed mode combustion not only at the flame base but also in downstream locations. The mixed mode combustion is observed in instantaneous structures as in earlier studies and in averaged structure, in which the predominant mode is found to be premixed combustion with varying equivalence ratio. The non-premixed combustion in the averaged structure is observed only in a narrow region at the edge of the jet shear layer. The analyzes of flame stretch show large probability for negative flame stretch leading to negative surface averaged flame stretch. The displacement speed-curvature correlation is observed to be negative contributing to the negative flame stretch and partial premixing resulting from jet entrainment acts to reduce the negative correlation. The contribution of turbulent straining to the flame stretch is observed to be negative when the scalar gradient aligns with the most extensive principal strain rate. The physics behind the negative flame stretch resulting from turbulent straining is discussed and elucidated through a simple analysis of the flame surface density transport equation. © 2014 Copyright Taylor and Francis Group, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results of three-dimensional Direct Numerical Simulation (DNS) of Moderate, Intense Low-oxygen Dilution (MILD) and conventional premixed turbulent combustion conducted using a skeletal mechanism including the effects of non-unity Lewis numbers and temperature dependent transport properties are analysed to investigate combustion characteristics using scalar gradient information. The DNS data is also used to synthesise laser induced fluorescence (LIF) signals of OH, CH2O, and CHO. These signals are analysed to verify if they can be used to study turbulent MILD combustion and it has been observed that at least two (OH and CH2O) LIF signals are required since the OH increase across the reaction zone is smaller in MILD combustion compared to premixed combustion. The scalar gradient PDFs conditioned on the reaction rate obtained from the DNS data and synthesised LIF signals suggests a strong gradient in the direction normal to the MILD reaction zone with moderate reaction rate implying flamelet combustion. However, the PDF of the normal gradient is as broad as for the tangential gradient when the reaction rate is high. This suggests a non-flamelet behaviour, which is due to interaction of reaction zones. The analysis of the conditional PDFs for the premixed case confirms the expected behaviour of scalar gradient in flamelet combustion. It has been shown that the LIF signals synthesised using 2D slices of DNS data also provide very similar insights. These results demonstrate that the so-called flameless combustion is not an idealised homogeneous reactive mixture but has common features of conventional combustion while containing distinctive characteristics. © 2013 The Combustion Institute.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study focuses on the modelling of turbulent lifted jet flames using flamelets and a presumed Probability Density Function (PDF) approach with interest in both flame lift-off height and flame brush structure. First, flamelet models used to capture contributions from premixed and non-premixed modes of the partially premixed combustion in the lifted jet flame are assessed using a Direct Numerical Simulation (DNS) data for a turbulent lifted hydrogen jet flame. The joint PDFs of mixture fraction Z and progress variable c, including their statistical correlation, are obtained using a copula method, which is also validated using the DNS data. The statistically independent PDFs are found to be generally inadequate to represent the joint PDFs from the DNS data. The effects of Z-c correlation and the contribution from the non-premixed combustion mode on the flame lift-off height are studied systematically by including one effect at a time in the simulations used for a posteriori validation. A simple model including the effects of chemical kinetics and scalar dissipation rate is suggested and used for non-premixed combustion contributions. The results clearly show that both Z-c correlation and non-premixed combustion effects are required in the premixed flamelets approach to get good agreement with the measured flame lift-off heights as a function of jet velocity. The flame brush structure reported in earlier experimental studies is also captured reasonably well for various axial positions. It seems that flame stabilisation is influenced by both premixed and non-premixed combustion modes, and their mutual influences. © 2014 Taylor & Francis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

对来流Mach数2.25及6的平板边界层湍流进行了直接数值模拟,并通过与理论、实验及他人计算结果的对比对数值结果进行了验证。基于直接数值模拟得到的湍流数据库,对常用的湍流模型进行了先验评估。评估的湍流模型有k-e模型(包括标准k-e模型、可实现的k-e模型及低Reynolds数k-模型)、SA模型及BL模型。结果显示,可实现的k-e模型的具有较好的预测能力,而标准k-e模型预测的湍流粘性系数偏高。SA模型在边界层内层预测准确度较高,而在外层预测值偏高。对于高Mach数情况,原始的BL模型严重低估了内-外层交界位置,造成湍流粘性系数预测值偏低。作者通过修改模型系数及内-外层交界位置对BL模型进行了修改,修改后模型预测的湍流粘性系数与DNS给出的值吻合较好

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within the framework of a dinuclear system (DNS) model, the evaporation-residue excitation functions and the quasi-fission mass yields in the 48Ca induced fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei based on stable actinide targets are obtained. Isotopic trends in the production of the superheavy elements Z = 110, 112–118 based on the actinide isotopic targets are analyzed systematically. Optimal evaporation channels and combinations as well as the corresponding excitation energies are proposed. The possible factors that influencing the isotopic dependence of the production cross sections are analyzed. The formation of the superheavy nuclei based on the isotopes U with different projectiles are also investigated and calculated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus and the de-excitation process are calculated by using an empirical coupled channel model, solving a set of microscopically derived master equations numerically and applying statistical theory, respectively.Fusion-fission reactions and evaporation residue excitation functions of synthesizing superheavy nuclei (SHN)are investigated systematically and compared them with available experimental data. The possible factors that affecting the production cross sections of SHN are discussed in this workshop.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within the framework of the dinuclear system (DNS) model, production cross sections of new superheavy nuclei with charged numbers Z=108-114 are analyzed systematically. Possible combinations based on the actinide nuclides U-238, Pu-244, and Cm-248,Cm-250 with the optimal excitation energies and evaporation channels are pointed out to synthesize new isotopes that lie between the nuclides produced in the cold fusion reactions and the Ca-48-induced fusion reactions experimentally, which are feasible to be constructed experimentally. It is found that the production cross sections of superheavy nuclei decrease drastically with the charged numbers of compound nuclei. Larger mass asymmetries of the entrance channels enhance the cross sections in 2n-5n channels.