916 resultados para DNA-REPAIR


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ionising radiation plays a key role in therapy due to its ability to directly induce DNA damage, in particular DNA double-strand breaks leading to cell death. Cells have multiple repair pathways which attempt to maintain genomic stability. DNA repair proteins have become key targets for therapy, using small molecule inhibitors, in combination with radiation and or chemotherapeutic agents as a means of enhancing cell killing. Significant advances in our understanding of the response of cells to radiation exposures has come from the observation of non-targeted effects where cells respond via mechanisms other than those which are a direct consequence of energy-dependent DNA damage. Typical of these is bystander signalling where cells respond to the fact that their neighbours have been irradiated. Bystander cells show a DNA damage response which is distinct from directly irradiated cells. In bystander cells, ATM- and Rad3-related (ATR) protein kinase-dependent signalling in response to stalled replication forks is an early event in the DNA damage response. The ATM protein kinase is activated downstream of ATR in bystander cells. This offers the potential for differential approaches for the modulation of bystander and direct effects with repair inhibitors which may impact on the response of tumours and on the protection of normal tissues during radiotherapy. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A significant proportion of human cancers overexpress DNA polymerase beta (Pol beta), the major DNA polymerase involved in base excision repair. The underlying mechanism and biological consequences of overexpression of this protein are unknown. We examined whether Pol beta, expressed at levels found in tumor cells, is involved in the repair of DNA damage induced by oxaliplatin treatment and whether the expression status of this protein alters the sensitivity of cells to oxaliplatin. DNA damage induced by oxaliplatin treatment of HCT116 and HT29 colon cancer cells was observed to be associated with the stabilization of Pol beta protein on chromatin. In comparison with HCT116 colon cancer cells, isogenic oxaliplatin-resistant (HCT-OR) cells were found to have higher constitutive levels of Pol beta protein, faster in vitro repair of a DNA substrate containing a single nucleotide gap and faster repair of 1,2-GG oxaliplatin adduct levels in cells. In HCT-OR cells, small interfering RNA knockdown of Pol beta delayed the repair of oxaliplatin-induced DNA damage. In a different model system, Pol beta-deficient fibroblasts were less able to repair 1,2-GG oxaliplatin adducts and were hypersensitive to oxaliplatin treatment compared with isogenic Pol beta-expressing cells. Consistent with previous studies, Pol beta-deficient mouse fibroblasts were not hypersensitive to cisplatin treatment. These data provide the first link between oxaliplatin sensitivity and DNA repair involving Pol beta. They demonstrate that Pol beta modulates the sensitivity of cells to oxaliplatin treatment. Oncogene (2010) 29, 463-468; doi:10.1038/onc.2009.327; published online 19 October 2009

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cellular response to radiation damage is made by a complex network of pathways and feedback loops whose spatiotemporal organization is still unclear despite its decisive role in determining the fate of the damaged cell. The single-cell approach and the high spatial resolution offered by microbeams provide the perfect tool to study and quantify the dynamic processes associated with the induction and repair of DNA damage. The soft X-ray microbeam has been used to follow the development of radiation induced foci in live cells by monitoring their size and intensity as a function of dose and time using yellow fluorescent protein (YFP) tagging techniques. Preliminary data indicate a delayed and linear rising of the intensity signal indicating a slow kinetic for the accumulation of DNA repair protein 53BP1. A slow and limited foci diffusion has also been observed. Further investigations are required to assess whatever such diffusion is consistent with a random walk pattern or if it is the result of a more structured lesion processing phenomenon. In conclusion, our data indicates that the use of microbeams coupled to live cell microscopy represent a sophisticated approach for visualizing and quantifying the dynamics changes of DNA proteins at the damaged sites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

SIGNIFICANCE:
Ionizing radiation (IR) can induce a wide range of unique deoxyribonucleic acid (DNA) lesions due to the spatiotemporal correlation of the ionization produced. Of these, DNA double strand breaks (DSBs) play a key role. Complex mechanisms and sophisticated pathways are available within cells to restore the integrity and sequence of the damaged DNA molecules.
RECENT ADVANCES:
Here we review the main aspects of the DNA DSB repair mechanisms with emphasis on the molecular pathways, radiation-induced lesions, and their significance for cellular processes.
CRITICAL ISSUES:
Although the main characteristics and proteins involved in the two DNA DSB repair processes present in eukaryotic cells (homologous recombination and nonhomologous end-joining) are reasonably well established, there are still uncertainties regarding the primary sensing event and their dependency on the complexity, location, and time of the damage. Interactions and overlaps between the different pathways play a critical role in defining the repair efficiency and determining the cellular functional behavior due to unrepaired/miss-repaired DNA lesions. The repair pathways involved in repairing lesions induced by soluble factors released from directly irradiated cells may also differ from the established response mechanisms.
FUTURE DIRECTIONS:
An improved understanding of the molecular pathways involved in sensing and repairing damaged DNA molecules and the role of DSBs is crucial for the development of novel classes of drugs to treat human diseases and to exploit characteristics of IR and alterations in tumor cells for successful radiotherapy applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The DNA mismatch repair (MMR) pathway detects and repairs DNA replication errors. While DNA MMR-proficiency is known to play a key role in the sensitivity to a number of DNA damaging agents, its role in the cytotoxicity of ionizing radiation (IR) is less well characterized. Available literature to date is conflicting regarding the influence of MMR status on radiosensitivity, and this has arisen as a subject of controversy in the field. The aim of this paper is to provide the first comprehensive overview of the experimental data linking MMR proteins and the DNA damage response to IR. A PubMed search was conducted using the key words "DNA mismatch repair" and "ionizing radiation". Relevant articles and their references were reviewed for their association between DNA MMR and IR. Recent data suggest that radiation dose and the type of DNA damage induced may dictate the involvement of the MMR system in the cellular response to IR. In particular, the literature supports a role for the MMR system in DNA damage recognition, cell cycle arrest, DNA repair and apoptosis. In this review we discuss our current understanding of the impact of MMR status on the cellular response to radiation in mammalian cells gained from past and present studies and attempt to provide an explanation for how MMR may determine the response to radiation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mitochondria have an important role in cell metabolism, being the major site of ATP production via oxidative phosphorylation (OXPHOS). Accumulation of mtDNA mutations have been linked to the development of respiratory dysfunction, apoptosis, and aging. Base excision repair (BER) is the major and the only certain repair pathway existing in mitochondria that is in responsible for removing and repairing various base modifications as well as abasic sites (AP sites). In this research, Saccharomyces cerevisiae (S. cerevisiae) BER gene knockout strains, including 3 single DNA glycosylase gene knockout strains and Ap endonuclease (Apn 1 p) knockout strain were used to examine the importance of this DNA repair pathway to the maintenance of respiratory function. Here, I show that individual DNA glycosylases are nonessential in maintenance of normal function in yeast mitochondria, corroborating with previous research in mammalian experimental models. The yeast strain lacking Apn 1 p activity exhibits respiratory deficits, including inefficient and significantly low intracellular ATP level, which maybe due to partial uncoupling of OXPHOS. Growth of this yeast strain on respiratory medium is inhibited, but no evidence was found for increased ROS level in Apn 1 p mitochondria. This strain also shows an increased cell size, and this observation combined with an uncoupled OXPHOS may indicate a premature aging in the Apnlp knockout strain, but more evidence is needed to support this hypothesis. However, the BER is necessary for maintenance of mitochondrial function in respiring S.cerevisiae.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Doxorubicin (DOX) is an important tumor chemotherapeutic agent, acting mainly by genotoxic action. This work focus on cell processes that help cell survival, after DOX-induced DNA damage. In fact, cells deficient for XPA or DNA polymerase eta (pol eta, XPV) proteins (involved in distinct DNA repair pathways) are highly DOX-sensitive. Moreover, LY294002, an inhibitor of PIKK kinases, showed a synergistic killing effect in cells deficient in these proteins, with a strong induction of G2/M cell cycle arrest. Taken together, these results indicate that XPA and pol eta proteins participate in cell resistance to DOX-treatment, and kinase inhibitors can selectively enhance its killing effects, probably reducing the cell ability to recover from breaks induced in DNA. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Melanins have been associated with the development of melanoma and its resistance to photodynamic therapy (PDT). Singlet molecular oxygen (102), which is produced by ultraviolet A solar radiation and the PDT system, is also involved. Here, we investigated the effects that these factors have on DNA damage and repair. Our results show that both types of melanin (eumelanin and pheomelanin) lead to DNA breakage in the absence of light irradiation and that eumelanin is more harmful than pheomelanin. Interestingly, melanins were found to bind to the minor grooves of DNA, guaranteeing close proximity to DNA and potentially causing the observed high levels of strand breaks. We also show that the interaction of melanins with DNA can impair the access of repair enzymes to lesions, contributing to the perpetuation of DNA damage. Moreover, we found that after melanins interact with 102, they exhibit a lower ability to induce DNA breakage; we propose that these effects are due to modifications of their structure. Together, our data highlight the different modes of action of the two types of melanin. Our results may have profound implications for cellular redox homeostasis, under conditions of induced melanin synthesis and irradiation with solar light. These results may also be applied to the development of protocols to sensitize melanoma cells to PDT. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The presence of damaged nucleobases in DNA can negatively influence transcription of genes. One of the mechanisms by which DNA damage interferes with reading of genetic information is a direct blockage of the elongating RNA polymerase complexes – an effect well described for bulky adducts induced by several chemical substances and UV-irradiation. However, other mechanisms must exist as well because many of the endogenously occurring non-bulky DNA base modifications have transcription-inhibitory properties in cells, whilstrnnot constituting a roadblock for RNA polymerases under cell free conditions. The inhibition of transcription by non-blocking DNA damage was investigated in this work by employing the reporter gene-based assays. Comparison between various types of DNA damage (UV-induced pyrimidine photoproducts, oxidative purine modifications induced by photosensitisation, defined synthetic modified bases such as 8-oxoguanine and uracil, and sequence-specific single-strand breaks) showed that distinct mechanisms of inhibition of transcription can be engaged, and that DNA repair can influence transcription of the affectedrngenes in several different ways.rnQuantitative expression analyses of reporter genes damaged either by the exposure of cells to UV or delivered into cells by transient transfection supported the earlier evidence that transcription arrest at the damage sites is the major mechanism for the inhibition of transcription by this kind of DNA lesions and that recovery of transcription requires a functional nucleotide excision repair gene Csb (ERCC6) in mouse cells. In contrast, oxidisedrnpurines generated by photosensitisation do not cause transcriptional blockage by a direct mechanism, but rather lead to transcriptional repression of the damaged gene which is associated with altered histone acetylation in the promoter region. The whole chain of events leading to transcriptional silencing in response to DNA damage remains to be uncovered. Yet, the data presented here identify repair-induced single-strand breaks – which arise from excision of damaged bases by the DNA repair glycosylases or endonucleases – as arnputative initiatory factor in this process. Such an indirect mechanism was supported by requirement of the 8-oxoguanine DNA glycosylase (OGG1) for the inhibition of transcription by synthetic 8-oxodG incorporated into a reporter gene and by the delays observed for the inhibition of transcription caused by structurally unrelated base modifications (8-oxoguanine and uracil). It is thereby hypothesized that excision of the modified bases could be a generalrnmechanism for inhibition of transcription by DNA damage which is processed by the base excision repair (BER) pathway. Further gene expression analyses of plasmids containing single-strand breaks or abasic sites in the transcribed sequences revealed strong transcription inhibitory potentials of these lesions, in agreement with the presumption that BER intermediates are largely responsible for the observed effects. Experiments with synthetic base modifications positioned within the defined DNA sequences showed thatrninhibition of transcription did not require the localisation of the lesion in the transcribed DNA strand; therefore the damage sensing mechanism has to be different from the direct encounters of transcribing RNA polymerase complexes with DNA damage.rnAltogether, this work provides new evidence that processing of various DNA basernmodifications by BER can perturb transcription of damaged genes by triggering a gene silencing mechanism. As gene expression can be influenced even by a single DNA damage event, this mechanism could have relevance for the endogenous DNA damage induced in cells under normal physiological conditions, with a possible link to gene silencing in general.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abnormal activation of cellular DNA repair pathways by deregulated signaling of receptor tyrosine kinase systems has broad implications for both cancer biology and treatment. Recent studies suggest a potential link between DNA repair and aberrant activation of the hepatocyte growth factor receptor Mesenchymal-Epithelial Transition (MET), an oncogene that is overexpressed in numerous types of human tumors and considered a prime target in clinical oncology. Using the homologous recombination (HR) direct-repeat direct-repeat green fluorescent protein ((DR)-GFP) system, we show that MET inhibition in tumor cells with deregulated MET activity by the small molecule PHA665752 significantly impairs in a dose-dependent manner HR. Using cells that express MET-mutated variants that respond differentially to PHA665752, we confirm that the observed HR inhibition is indeed MET-dependent. Furthermore, our data also suggest that decline in HR-dependent DNA repair activity is not a secondary effect due to cell cycle alterations caused by PHA665752. Mechanistically, we show that MET inhibition affects the formation of the RAD51-BRCA2 complex, which is crucial for error-free HR repair of double strand DNA lesions, presumably via downregulation and impaired translocation of RAD51 into the nucleus. Taken together, these findings assist to further support the role of MET in the cellular DNA damage response and highlight the potential future benefit of MET inhibitors for the sensitization of tumor cells to DNA damaging agents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High mobility group protein B1 (HMGB1) is a multifunctional protein with roles in chromatin structure, transcription, V(D)J recombination, and inflammation. HMGB1 also binds to and bends damaged DNA, but the biological consequence of this interaction is not clearly understood. We have shown previously that HMGB1 binds cooperatively with nucleotide excision repair (NER) damage recognition proteins XPA and RPA to triplex-directed psoralen DNA interstrand crosslinks (ICLs). Based on this we hypothesized that HMGB1 is enhancing the repair of DNA lesions, and through this role, is affecting DNA damage-induced mutagenesis and cell survival. Because HMGB1 is also a chromatin protein, we further hypothesized that it is acting to facilitate chromatin remodeling at the site of the DNA damage, to allow access of the repair machinery to the DNA lesion. We demonstrated here that HMGB1 could bind to triplex-directed psoralen ICLs in a complex with NER proteins XPC-RAD23B, XPA and RPA, which occurred in the presence or absence of DNA. Supporting these findings, we demonstrated that HMGB1 enhanced repair of triplex-directed psoralen ICLs (by nucleotide incorporation), as well as removal of UVC irradiation-induced DNA lesions from the genome (by radioimmunoassay). We also explored HMGB1's role in chromatin remodeling upon DNA damage. Immunoblotting demonstrated that, in contrast to HMGB1 proficient cells, cells lacking HMGB1 showed no increase in histone acetylation after UVC irradiation. Additionally, purified HMGB1 protein enhanced chromatin formation in an in vitro chromatin assembly system. However, HMGB1 also has a role in DNA repair in the absence of chromatin, as shown by measuring UVC-induced nucleotide incorporation on a naked substrate. Upon exploration of HMGB1's effect on several cellular outcomes of DNA damage, we found that mammalian cells lacking HMGB1 were hypersensitive to DNA damage induced by psoralen plus UVA irradiation or UVC radiation, showing less survival and increased mutagenesis. These results reveal a new role for HMGB1 in the error-free repair of DNA lesions in a chromosomal context. As strategies targeting HMGB1 are currently in development for treatment of sepsis and rheumatoid arthritis, our findings draw attention to potential adverse side effects of anti-HMGB1 therapy in patients with inflammatory diseases. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The DNA mismatch repair (MMR) is a specialized system, highly conserved throughout evolution, involved in the maintenance of genomic integrity. To identify novel human genes that may function in MMR, we employed the yeast interaction trap. Using the MMR protein MLH1 as bait, we cloned MED1. The MED1 protein forms a complex with MLH1, binds to methyl-CpG-containing DNA, has homology to bacterial DNA repair glycosylases/lyases, and displays endonuclease activity. Transfection of a MED1 mutant lacking the methyl-CpG-binding domain (MBD) is associated with microsatellite instability (MSI). These findings suggest that MED1 is a novel human DNA repair protein that may be involved in MMR and, as such, may be a candidate eukaryotic homologue of the bacterial MMR endonuclease, MutH. In addition, these results suggest that cytosine methylation may play a role in human DNA repair.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mutations are introduced into rearranged Ig variable genes at a frequency of 10−2 mutations per base pair by an unknown mechanism. Assuming that DNA repair pathways generate or remove mutations, the frequency and pattern of mutation will be different in variable genes from mice defective in repair. Therefore, hypermutation was studied in mice deficient for either the DNA nucleotide excision repair gene Xpa or the mismatch repair gene Pms2. High levels of mutation were found in variable genes from XPA-deficient and PMS2-deficient mice, indicating that neither nucleotide excision repair nor mismatch repair pathways generate hypermutation. However, variable genes from PMS2-deficient mice had significantly more adjacent base substitutions than genes from wild-type or XPA-deficient mice. By using a biochemical assay, we confirmed that tandem mispairs were repaired by wild-type cells but not by Pms2−/− human or murine cells. The data indicate that tandem substitutions are produced by the hypermutation mechanism and then processed by a PMS2-dependent pathway.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It has previously been reported that 1,N6-ethenoadenine (ɛA), deaminated adenine (hypoxanthine, Hx), and 7,8-dihydro-8-oxoguanine (8-oxoG), but not 3,N4-ethenocytosine (ɛC), are released from DNA in vitro by the DNA repair enzyme alkylpurine-DNA-N-glycosylase (APNG). To assess the potential contribution of APNG to the repair of each of these mutagenic lesions in vivo, we have used cell-free extracts of tissues from APNG-null mutant mice and wild-type controls. The ability of these extracts to cleave defined oligomers containing a single modified base was determined. The results showed that both testes and liver cells of these knockout mice completely lacked activity toward oligonucleotides containing ɛA and Hx, but retained wild-type levels of activity for ɛC and 8-oxoG. These findings indicate that (i) the previously identified ɛA-DNA glycosylase and Hx-DNA glycosylase activities are functions of APNG; (ii) the two structurally closely related mutagenic adducts ɛA and ɛC are repaired by separate gene products; and (iii) APNG does not contribute detectably to the repair of 8-oxoG.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ultraviolet-B (UVB) (290–320 nm) radiation-induced cyclobutane pyrimidine dimers within the DNA of epidermal cells are detrimental to human health by causing mutations and immunosuppressive effects that presumably contribute to photocarcinogenesis. Conventional photoprotection by sunscreens is exclusively prophylactic in nature and of no value once DNA damage has occurred. In this paper, we have therefore assessed whether it is possible to repair UVB radiation-induced DNA damage through topical application of the DNA-repair enzyme photolyase, derived from Anacystis nidulans, that specifically converts cyclobutane dimers into their original DNA structure after exposure to photoreactivating light. When a dose of UVB radiation sufficient to induce erythema was administered to the skin of healthy subjects, significant numbers of dimers were formed within epidermal cells. Topical application of photolyase-containing liposomes to UVB-irradiated skin and subsequent exposure to photoreactivating light decreased the number of UVB radiation-induced dimers by 40–45%. No reduction was observed if the liposomes were not filled with photolyase or if photoreactivating exposure preceded the application of filled liposomes. The UVB dose administered resulted in suppression of intercellular adhesion molecule-1 (ICAM-1), a molecule required for immunity and inflammatory events in the epidermis. In addition, in subjects hypersensitive to nickel sulfate, elicitation of the hypersensitivity reaction in irradiated skin areas was prevented. Photolyase-induced dimer repair completely prevented these UVB radiation-induced immunosuppressive effects as well as erythema and sunburn-cell formation. These studies demonstrate that topical application of photolyase is effective in dimer reversal and thereby leads to immunoprotection.