978 resultados para DNA Polymerase II


Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA topoisomerases are ubiquitous nuclear enzymes that govern the topological interconversions of DNA by transiently breaking/rejoining the phosphodiester backbone of one (type I) or both (type II) strands of the double helix. Consistent with these functions, topoisomerases play key roles in many aspects of DNA metabolism. Type II DNA topoisomerase (topo II) is vital for various nuclear processes, including DNA replication, chromosome segregation, and maintenance of chromosome structure. Topo II expression is regulated at multiple stages, including transcriptional, posttranscriptional, and posttranslational levels, by a multitude of signaling factors. Topo II is also the cellular target for a variety of clinically relevant anti-tumor drugs. Despite significant progress in our understanding of the role of topo II in diverse nuclear processes, several important aspects of topo II function, expression, and regulation are poorly understood. We have focused this review specifically on eukaryotic DNA topoisomerase II, with an emphasis on functional and regulatory characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part I

The infection of E. coli by ΦX174 at 15°C is abortive; the cells are killed by the infection but neither mature phage nor SS (single-stranded) DNA are synthesized. Parental RF (replicative form) is formed and subsequently replicated at 15°C. The RF made at 15°C shows normal infectivity and full competence to act as precursor to progeny SS DNA after an increase in temperature to 37°C. The investigations suggest that all of the proteins required for SS DNA synthesis and phage maturation are present in the abortive infection at 15°C.

Three possible causes are suggested for the abortive infection at 15°C: (a) A virus-coded protein whose role is essential to the infection is made at 15°C and assumes its native conformation, but its rate of activity is too low at this temperature to sustain the infection process. (b) Virus maturation may involve the formation of a DNA-protein complex and conformational changes which have an energy threshold infrequently reached at 15°C. (c) A host-coded protein present in uninfected cells, and whose activity is essential to the infection at all temperatures, but not to the host at 15°C, is inactive at 15°C. An hypothesis of this type is offered which proposes that the temperature-limiting factor in SS DNA synthesis in vivo may reflect a temperature-dependent property of the host DNA polymerase.

Part II

Three distinct stages are demonstrated in the process whereby ΦX174 invades its host: (1) Attachment: The phage attach to the cell in a manner that does not irreversibly alter the phage particle and which exhibits "single-hit" kinetics. The total charge on the phage particle is demonstrated to be important in determining the rate at which stable attachment is effected. The proteins specified by ΦX cistrons II, III and VII play roles, which may be indirect, in the attachment reaction. (2) Eclipse: 'The attached phage undergo a conformational change. Some of the altered phage particles spontaneously detach from the cell (in a non-infective form) while the remainder are more tightly bound to the cell. The altered phage particles detached (spontaneously or chemically) from such complexes have at least 40% of their DNA extruded from the phage coat. It is proposed that this particle is, or derives from, a direct intermediate in the penetration of the viral DNA.

The kinetics for the eclipse of attached phage particles are first-order with respect to phage concentration and biphasic; about 85% of the phage eclipse at one rate (k = 0.86 min-1) and the remainder do so at a distinctly lesser rate (k = 0.21 min-1).

The eclipse event is very temperature-dependent and has the relatively high Arrhenius activation energy of 36.6 kcal/mole, indicating the cooperative nature of the process. The temperature threshold for eclipse is 17 to 18°C.

At present no specific ΦX cistron is identified as affecting the eclipse process. (3) DNA penetration: A fraction of the attached, eclipsed phage particles corresponding in number to the plaque-forming units complete DNA penetration. The penetrated DNA is found in the cell as RF, and the empty phage protein coat remains firmly attached to the exterior of the cell. This step is inhibited by prior irradiation of the phage with relatively high doses of UV light and is insensitive to the presence of KCN and NaN3. Temporally excluded superinfecting phages do not achieve DNA penetration.

Both eclipsed phage particles and empty phage protein coats may be dissociated from infected cells; some of their properties are described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Meiosis is a specialized eukaryotic cell division that generates haploid gametes required for sexual reproduction. During meiosis, homologous chromosomes pair and undergo reciprocal genetic exchange, termed crossover (CO). Meiotic CO frequency varies along the physical length of chromosomes and is determined by hierarchical mechanisms, including epigenetic organization, for example methylation of the DNA and histones. Here we investigate the role of DNA methylation in determining patterns of CO frequency along Arabidopsis thaliana chromosomes. In A. thaliana the pericentromeric regions are repetitive, densely DNA methylated, and suppressed for both RNA polymerase-II transcription and CO frequency. DNA hypomethylated methyltransferase1 (met1) mutants show transcriptional reactivation of repetitive sequences in the pericentromeres, which we demonstrate is coupled to extensive remodeling of CO frequency. We observe elevated centromere-proximal COs in met1, coincident with pericentromeric decreases and distal increases. Importantly, total numbers of CO events are similar between wild type and met1, suggesting a role for interference and homeostasis in CO remodeling. To understand recombination distributions at a finer scale we generated CO frequency maps close to the telomere of chromosome 3 in wild type and demonstrate an elevated recombination topology in met1. Using a pollen-typing strategy we have identified an intergenic nucleosome-free CO hotspot 3a, and we demonstrate that it undergoes increased recombination activity in met1. We hypothesize that modulation of 3a activity is caused by CO remodeling driven by elevated centromeric COs. These data demonstrate how regional epigenetic organization can pattern recombination frequency along eukaryotic chromosomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

以贾第虫、毛滴虫、内变形虫和微抱子虫等为代表的几类原生生物,不仅因为他们的寄生致病性而在医学上长期备受关注,它们的进化地位也是一个十分令人注目的问题。因为曾认为它们不具线粒体等细胞器,再加上一些分子系统学研究表明它们处在真核生物的最基部,因此不少人认为它们是在线粒体产生之前即已分化的极原始真核生物,其进化地位是处在原核生物向真核生物的过渡阶段,并有人称之为achezoa。这一发现一度被认为对探讨真核细胞(生物)的起源进化极为重要,是进化生物学上的重要突破。然而,近年来不断有新的证据对此提出质疑,其进化地位也就存在较大争议。本文首先利用PCR扩增、测序和基因组数据库搜索等技术方法鉴定了蓝氏贾第虫(Giardialamblia)、阴道毛滴虫(Trichomonasvaginalis)和痢疾内变形虫(entamoebahistolytica)的IIDNA拓扑异构酶基因序列。RT-PCR和序列分析表明它们均不具内含子。蛋白质序列搜索的结果表明它们与其它真核生物的DNA拓扑异构酶H是高度同源的。用生物信息学的方法,我们还对这些酶的性质进行了初步分析。分析还表明蓝氏贾第虫的DNA拓扑异构酶H具有一些不同于其.宿主的特征,如在ATPase区和中间区有六个插入,中间区要长大约100个氨基酸,而C端区又短大约200个氨基酸且富含带电荷的氨基酸残基。这些结果对研制以该酶为靶分子的专一性抗贾第虫药物具有指导意义。其次,将上述获得的序列数据结合GenBank数据库中已有的脑炎微抱子虫(Encephalitozooncuniculi)和其它一系列处在不同进化地位的真核生物的相应序列数据,用多种方法构建出分子系统树,对这些"无线粒体"原生生物的进化地位进行了探讨,并对"长枝吸引"对系统树的影响进行了分析。结果表明,由于DNA拓扑异构酶H的特点和可以克服"长枝吸引"等以往分子系统分析中的不足,所构建的系统树不仅能有效地反映出已普遍接受的真核生物各主要类群的系统关系,而且显示出这些"无线粒体"原生动物不同于以前系统树所反映的进化地位:它们并非是最早分支出来的真核生物,而是在具有线粒体的生物如动基体类或菌虫类等之后才分化的、分别属于不同进化地位的类群。结合近来它们中发现了类似线粒体细胞器等证据,我们认为这些所谓"无线粒体"的原生生物虽然其中有些种类(如以贾第虫为代表的双滴虫类)进化地位很低等,对探讨真核细胞的早期进化具有一定意义,但总体上它们并非过去所认为的那么极端原始,它们应该是线粒体产生之后才分别分化出来的不同生物类群

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La phosphorylation du domaine C-terminal de l’ARN polymérase II permet à ce complexe protéique d’exécuter la transcription des gènes, en plus de coupler à la transcription des événements moléculaires comme la maturation des ARNm. Mes résultats montrent que même si cette phosphorylation suit un patron similaire à l’ensemble des gènes, il existe des exceptions pouvant être dues à des mécanismes alternatifs de phosphorylation du CTD. Le présent ouvrage s’intéresse également au rôle qu’occupe la variante d’histone H2A.Z dans l’organisation de la chromatine. Des études précédentes on montré que le positionnement de certains nucléosomes le long de l’ADN serait influencé par H2A.Z et aurait une influence sur la capacité de transcrire les gènes. Par une approche génomique utilisant les puces à ADN, j’ai cartographié l’impact de la délétion de H2A.Z sur la structure des nucléosomes. Enfin, des résultats intéressants sur la dynamique d’incorporation de H2A.Z à la chromatine ont été obtenus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La chromatine est plus qu’un système d’empaquetage de l’ADN ; elle est le support de toutes les réactions liées à l’ADN dans le noyau des cellules eucaryotes et participe au contrôle de l’accès de l’ARN polymérase II (ARNPolII) à l’ADN. Responsable de la transcription de tous les ARNm des cellules eucaryotes, l’ARNPolII doit, suivant son recrutement aux promoteurs des gènes, transcrire l’ADN en traversant la matrice chromatinienne. Grâce au domaine C-terminal (CTD) de sa sous-unité Rpb1, elle coordonne la maturation de l’ARNm en cours de synthèse ainsi que les modifications de la chromatine, concomitantes à la transcription. Cette thèse s’intéresse à deux aspects de la transcription : la matrice, avec la localisation de la variante d’histone H2A.Z, et la machinerie de transcription avec le cycle de phosphorylation du CTD de l’ARNPolII. Suivant l’introduction, le chapitre 2 de cette thèse constitue un protocole détaillé et annoté de la technique de ChIP-chip, chez la levure Saccharomyces cerevisiae. Cette technique phare dans l’étude in vivo des phénomènes liés à l’ADN a grandement facilité l’étude du rôle de la chromatine dans les phénomènes nucléaires, en permettant de localiser sur le génome les marques et les variantes d’histones. Ce chapitre souligne l’importance de contrôles adéquats, spécifiques à l’étude de la chromatine. Au chapitre 3, grâce à la méthode de ChIP-chip, la variante d’histone H2A.Z est cartographiée au génome de la levure Saccharomyces cerevisiae avec une résolution d’environ 300 paires de bases. Nos résultats montrent que H2A.Z orne un à deux nucléosomes au promoteur de la majorité des gènes. L’enrichissement de H2A.Z est anticorrélé à la transcription et nos résultats suggèrent qu’elle prépare la chromatine pour l’activation des gènes. De plus H2A.Z semble réguler la localisation des nucléosomes. Le chapitre suivant s’intéresse à la transcription sous l’angle de la machinerie de transcription en se focalisant sur le cycle de phosphorylation de l’ARN polymérase II. Le domaine C-terminal de sa plus large sous-unité est formé de répétitions d’un heptapeptide YSPTSPS dont les résidus peuvent être modifiés au cours de la transcription. Cette étude localise les marques de phosphorylation des trois résidus sérine de manière systématique dans des souches mutantes des kinases et phosphatases. Nos travaux confirment le profil universel des marques de phosphorylations aux gènes transcrits. Appuyés par des essais in vitro, ils révèlent l’interaction complexe des enzymes impliqués dans la phosphorylation, et identifient Ssu72 comme la phosphatase de la sérine 7. Cet article appuie également la notion de « variantes » des marques de phosphorylation bien que leur étude spécifique s’avère encore difficile. La discussion fait le point sur les travaux qui ont suivi ces articles, et sur les expériences excitantes en cours dans notre laboratoire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of ultraviolet (UV-C) photoproducts on apoptosis induction was investigated in growth arrested (confluent) and proliferating human primary fibroblasts. Confluent fibroblasts were more resistant to UV-C-induced apoptosis than proliferating cells, and this was observed for normal human cells and for cells from patients with Cockayne and trichothiodystrophy syndromes, deficient in transcription coupled repair. This resistance was sustained for at least seven days and was not due to DNA repair efficiency, as the removal of CPDs in the genome was similar under both growth conditions. There was no correlation between reduced apoptosis and RNA synthesis recovery. Following UV-C treatment, proliferating and confluent fibroblasts showed a similar level of RNA synthesis inhibition and recovery from transcription blockage. These results support the hypothesis that the decrease of DNA replication, in growth arrested cells, protects cell from UV-C-induced apoptosis, even in the presence of DNA lesions. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>Xanthomonas axonopodis pv. citri utilizes the type III effector protein PthA to modulate host transcription to promote citrus canker. PthA proteins belong to the AvrBs3/PthA family and carry a domain comprising tandem repeats of 34 amino acids that mediates protein-protein and protein-DNA interactions. We show here that variants of PthAs from a single bacterial strain localize to the nucleus of plant cells and form homo- and heterodimers through the association of their repeat regions. We hypothesize that the PthA variants might also interact with distinct host targets. Here, in addition to the interaction with alpha-importin, known to mediate the nuclear import of AvrBs3, we describe new interactions of PthAs with citrus proteins involved in protein folding and K63-linked ubiquitination. PthAs 2 and 3 preferentially interact with a citrus cyclophilin (Cyp) and with TDX, a tetratricopeptide domain-containing thioredoxin. In addition, PthAs 2 and 3, but not 1 and 4, interact with the ubiquitin-conjugating enzyme complex formed by Ubc13 and ubiquitin-conjugating enzyme variant (Uev), required for K63-linked ubiquitination and DNA repair. We show that Cyp, TDX and Uev interact with each other, and that Cyp and Uev localize to the nucleus of plant cells. Furthermore, the citrus Ubc13 and Uev proteins complement the DNA repair phenotype of the yeast Delta ubc13 and Delta mms2/uev1a mutants, strongly indicating that they are also involved in K63-linked ubiquitination and DNA repair. Notably, PthA 2 affects the growth of yeast cells in the presence of a DNA damage agent, suggesting that it inhibits K63-linked ubiquitination required for DNA repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some oxindole-Schiff base copper(II) complexes have already shown potential antitumor activity towards different cells, inducing apoptosis in a process modulated by the ligand, and having nuclei and mitochondria as main targets. Here, three novel copper(II) complexes with analogous ligands were isolated and characterized by spectroscopic techniques, having their reactivity compared to the so far most active complex in this class. Cytotoxicity experiments carried out toward human neuroblastoma SH-SY5Y cells confirmed its proapoptosis property. DNA cleavage studies were then performed in the presence of these complexes, in order to verify the influence of ligand structural features in its nuclease activity. All of them were able to cause double-strand DNA scissions, giving rise to nicked circular Form II and linear Form III species, in the presence of hydrogen peroxide. Additionally, DNA Form II was also detected in the absence of peroxide when the most active complex, [Cu(isaepy)(2)](2+) 1, was used. In an effort to better elucidate their interactions with DNA, solutions of the different complexes titrated with DNA had their absorption spectra monitored. An absorbance hyperchromism observed at 260 nm pointed to the intercalation of these complexes into the DNA structure. Further, investigations of 2-deoxy-D-ribose (DR) oxidation catalyzed by each of those complexes, using 2-thiobarbituric acid reactive species (TBARS) method, and detection of reactive oxygen species (ROS) formation by spin-trapping EPR, suggested that their mechanism of action in performing efficiently DNA cleavage occurs preferentially, but not only by oxidative pathways. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

beta-Glucan (BG) was tested in vitro to determine its potential clastogenic and/or anti-clastogenic activity, and attempts were made to elucidate its possible mechanism of action by using combinations with an inhibitor of DNA polymerase. The study was carried out on cells deficient (CHO-k1) and cells proficient (HTC) in phases I and II enzymes, and the DNA damage was assessed by the chromosomal aberration assay. BG did not show a clastogenic effect, but was anti-clastogenic in both cell lines used, and at all concentrations tested (2.5, 5 and 10 mg/mL) in combination with damage inducing agents (methylmethane sulfonate in cell line CHO-k1, and methylmethane sulfonate or 2-aminoanthracene in cell line HTC). BG also showed a protective effect in the presence of a DNA polymerase beta inhibitor (cytosine arabinoside-3-phosphate, Ara-C), demonstrating that BG does not act through an anti-mutagenic mechanism of action involving DNA polymerase beta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA block copolymer, a new class of hybrid material composed of a synthetic polymer and an oligodeoxynucleotide segment, owns unique properties which can not be achieved by only one of the two polymers. Among amphiphilic DNA block copolymers, DNA-b-polypropylene oxide (PPO) was chosen as a model system, because PPO is biocompatible and has a Tg < 0 °C. Both properties might be essential for future applications in living systems. During my PhD study, I focused on the properties and the structures of DNA-b-PPO molecules. First, DNA-b-PPO micelles were studied by scanning force microscopy (SFM) and fluorescence correlation spectroscopy (FCS). In order to control the size of micelles without re-synthesis, micelles were incubated with template-independent DNA polymerase TdT and deoxynucleotide triphosphates in reaction buffer solution. By carrying out ex-situ experiments, the growth of micelles was visualized by imaging in liquid with AFM. Complementary measurements with FCS and polyacrylamide gel electrophoresis (PAGE) confirmed the increase in size. Furthermore, the growing process was studied with AFM in-situ at 37 °C. Hereby the growth of individual micelles could be observed. In contrast to ex-situ reactions, the growth of micelles adsorbed on mica surface for in-situ experiments terminated about one hour after the reaction was initiated. Two reasons were identified for the termination: (i) block of catalytic sites by interaction with the substrate and (ii) reduced exchange of molecules between micelles and the liquid environment. In addition, a geometrical model for AFM imaging was developed which allowed deriving the average number of mononucleotides added to DNA-b-PPO molecules in dependence on the enzymatic reaction time (chapter 3). Second, a prototype of a macroscopic DNA machine made of DNA-b-PPO was investigated. As DNA-b-PPO molecules were amphiphilic, they could form a monolayer at the air-water interface. Using a Langmuir film balance, the energy released owing to DNA hybridization was converted into macroscopic movements of the barriers in the Langmuir trough. A specially adapted Langmuir trough was build to exchange the subphase without changing the water level significantly. Upon exchanging the subphase with complementary DNA containing buffer solution, an increase of lateral pressure was observed which could be attributed to hybridization of single stranded DNA-b-PPO. The pressure versus area/molecule isotherms were recorded before and after hybridization. I also carried out a series of control experiments, in order to identify the best conditions of realizing a DNA machine with DNA-b-PPO. To relate the lateral pressure with molecular structures, Langmuir Blodgett (LB) films were transferred to highly ordered pyrolytic graphite (HOPG) and mica substrates at different pressures. These films were then investigated with AFM (chapter 4). At last, this thesis includes studies of DNA and DNA block copolymer assemblies with AFM, which were performed in cooperation with different group of the Sonderforschungsbereich 625 “From Single Molecules to Nanoscopically Structured Materials”. AFM was proven to be an important method to confirm the formation of multiblock copolymers and DNA networks (chapter 5).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combitiatorial approach restriction endonuclease protection selection and amplification REPSA was successfully used to determine ideal DNA interactions sites of covalent ligands. Unlike most other combinatorial methods, REPSA is based on inhibition of enzymatic cleavage by specific ligand-DNA complexes, which enables identification of binding sites of various ligands. However, the inherent nature of this technique posses a problem during selection of binding sites of covalent ligands. By modifying the technique according to the nature of the ligand, we demonstrate the flexibility of REPSA in identifying the preferred binding sites for monocovalent ligands, topoisomerase I and tallimustine, and the bicovalent ligand topoisomerase II. From among the preferred binding sites, we identified the consensus binding sequence of camptothecin induced topoisomerase I cleavage as ‘aGWT/Gc’, and tallimustine consensus sequences as ‘GTTCTA’ and ‘TTTTTTC’. We have shown for the first time that preferential binding of tallimustine occurs at sequences not previously reported. Furthermore, our data indicate that tallimustine is a novel DNA minor groove, guanine-specific alkylating agent. ^ Additionally, we have demonstrated in vivo that sequence-specific covalent DNA-binding small molecules have the ability to regulate transcription by inhibiting RNA polymerase II. Tallimustine, binding to its preferred sequences located in the 5′ untranslated region were an effective impediment for transcribing polymerase II. The ability of covalent binding small molecules to target predetermined DNA sequences located downstream of the promoter suggests a general approach for regulation of gene expression. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The basal transcription factor IIE (TFIIE) is thought to be one of the last factors to be assembled into a preinitiation complex (PIC) at eukaryotic promoters after RNA polymerase II and TFIIF have been incorporated. It was shown that a primary function of TFIIE is to recruit and cooperate with TFIIH in promoter melting. Here, we show that the large subunit of TFIIE (E56) can directly stimulate TBP binding to the promoter in the absence of other basal factors. The zinc-finger domain of E56, required for transcriptional activity, is critical for this function. In addition, the small subunit of TFIIE (E34) directly contacts DNA and TFIIA and thus providing a second mechanism for TFIIE to help binding of a TBP/IIA complex to the promoter, the first critical step in the PIC assembly. These studies suggest an alternative PIC assembly pathway in which TFIIE affects both TBP and TFIIH functions during initiation of RNA synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Funding: Wellcome Trust, 070247/Z/03/A. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In general, the transcriptional competence of a chromatin domain is correlated with increased sensitivity to DNase I cleavage. A recent observation that actively transcribing RNA polymerase II piggybacks a histone acetyltranferase activity [Wittschieben, B., Otero, G., de Bizemont, T., Fellows, J., Erdjument-Bromage, H., Ohba, R., Li, Y., Allis, C. D., Tempst, P. & Svejstrup, J. Q. (1999) Mol. Cell 4, 123–128] implies that the state of histone acetylation, and hence the ability of chromatin to fold, can be altered by a processive mechanism. In this article, it is proposed that tracking-mediated chromatin modification could create and/or maintain an open configuration in a complete chromatin domain including both intra- and extragenic regions. This mechanism suggests a putative functional role for the extragenic transcription observed at the β-globin and other loci in vertebrate cells.