458 resultados para DIHYDRONICOTINAMIDE ADENINE-DINUCLEOTIDE
Resumo:
The AG dinucleotide at the 3′ splice sites of metazoan nuclear pre-mRNAs plays a critical role in catalytic step II of the splicing reaction. Previous studies have shown that replacement of the guanine by adenine in the AG (AG → GG) inhibits this step. We find that the second step was even more severely inhibited by cytosine (AG → CG) or uracil (AG → UG) substitutions at this position. By contrast, a relatively moderate inhibition was observed with a hypoxanthine substitution (AG → HG). When adenine was replaced by a purine base (AG → PG) or by 7-deazaadenine (AG → c7AG), little effect on the second step was observed, suggesting that the 6-NH2 and N7 groups do not play a critical role in adenine recognition. Finally, replacement of adenine by 2-aminopurine (AG → 2-APG) had no effect on the second step. Taken together, our results suggest that the N1 group of adenine functions as an essential determinant in adenine recognition during the second step of pre-mRNA splicing.
Resumo:
The oxidation of critical cysteines/related thiols of adenine nucleotide translocase (ANT) is believed to be an important event of the Ca(2+)-induced mitochondrial permeability transition (MPT), a process mediated by a cyclosporine A/ADP-sensitive permeability transition pores (PTP) opening. We addressed the ANT-Cys(56) relative mobility status resulting from the interaction of ANT/surrounding cardiolipins with Ca(2+) and/or ADP by means of computational chemistry analysis (Molecular Interaction Fields and Molecular Dynamics studies), supported by classic mitochondrial swelling assays. The following events were predicted: (i) Ca(2+) interacts preferentially with the ANT surrounding cardiolipins bound to the H4 helix of translocase, (ii) weakens the cardiolipins/ANT interactions and (iii) destabilizes the initial ANT-Cys(56) residue increasing its relative mobility. The binding of ADP that stabilizes the conformation ""m"" of ANT and/or cardiolipin, respectively to H5 and H4 helices, could stabilize their contacts with the short helix h56 that includes Cys(56), accounting for reducing its relative mobility. The results suggest that Ca(2+) binding to adenine nucleotide translocase (ANT)-surrounding cardiolipins in c-state of the translocase enhances (ANT)-Cys(56) relative mobility and that this may constitute a potential critical step of Ca(2+)-induced PTP opening. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Adenine phosphoribosyltransferase (APRT) is an important enzyme component of the purine recycling pathway. Parasitic protozoa of the order Kinetoplastida are unable to synthesize purines de novo and use the salvage pathway for the synthesis of purine bases rendering this biosynthetic pathway an attractive target for antiparasitic drug design. The recombinant human adenine phosphoribosyltransferase (hAPRT) structure was resolved in the presence of AMP in the active site to 1.76 angstrom resolution and with the substrates PRPP and adenine simultaneously bound to the catalytic site to 1.83 angstrom resolution. An additional structure was solved containing one subunit of the dimer in the apo-form to 2.10 angstrom resolution. Comparisons of these three hAPRT structures with other `type I` PRTases revealed several important features of this class of enzymes. Our data indicate that the flexible loop structure adopts an open conformation before and after binding of both substrates adenine and PRPR Comparative analyses presented here provide structural evidence to propose the role of Glu 104 as the residue that abstracts the proton of adenine N9 atom before its nucleophilic attack on the PRPP anomeric carbon. This work leads to new insights to the understanding of the APRT catalytic mechanism.
Resumo:
The immobilization and electro-oxidation of guanine and adenine asDNA bases on glassy carbon electrode are evaluated by square wave voltammetric analysis. The influence of electrochemical pretreatments, nature of supporting electrolyte, pH, accumulation time and composition of DNA nucleotides on the immobilization effect and the electrochemical mechanism are discussed. Trace levels of either guanine or adenine can be readily detected following short accumulation time with detection limits of 35 and 40 ngmL−1 for guanine and adenine, respectively. The biosensors of guanine and adenine were employed for the voltammetric detection of antioxidant capacity in flavored water samples. The method relies on monitoring the changes of the intrinsic anodic response of the surface-confined guanine and adenine species, resulting from its interaction with free radicals from Fenton-type reaction in absence and presence of antioxidant. Ascorbic acid was used as standard to evaluate antioxidant capacities of samples. Analytical data was compared with that of FRAP method.
Resumo:
Sequence data from regions of five vertebrate vitellogenin genes were used to examine the frequency, distribution, and mutability of the dinucleotide CpG, the preferred modification site for eukaryotic DNA methyltransferases. The observed level of the CpG dinucleotide in all five genes was markedly lower than that expected from the known mononucleotide frequencies. CpG suppression was greater in introns than in exons. CpG-containing codons were found to be avoided in the vitellogenin genes, but not completely despite the redundancy of the genetic code. Frequency and distribution patterns of this dinucleotide varied dramatically among these otherwise closely related genes. Dense clusters of CpG dinucleotides tended to appear in regions of either functional or structural interest (e.g., in the transposon-like Vi-element of Xenopus) and these clusters contained 5-methylcytosine (5 mC). 5 mC is known to undergo deamination to form thymidine, but the extent to which this transition occurs in the heavily methylated genomes of vertebrates and its contribution to CpG suppression are still unclear. Sequence comparison of the methylated vitellogenin gene regions identified C----T and G----A substitutions that were found to occur at relatively high frequencies. The predicted products of CpG deamination, TpG and CpA, were elevated. These findings are consistent with the view that CpG distribution and methylation are interdependent and that deamination of 5 mC plays an important role in promoting evolutionary change at the nucleotide sequence level.
Resumo:
A high-resolution crystal structure is reported for d(TpA)*, the intramolecular thymine-adenine photoadduct that is produced by direct ultraviolet excitation of the dinucleoside monophosphate d(TpA). It confirms the presence of a central 1,3-diazacyclooctatriene ring linking the remnants of the T and A bases, as previously deduced from heteronuclear NMR measurements by Zhao et al. (The structure of d(TpA)*, the major photoproduct of thymidylyl-(3'-5')-deoxyadenosine. Nucleic Acids Res., 1996, 24, 1554-1560). Within the crystal, the d(TpA)* molecules exist as zwitterions with a protonated amidine fragment of the eight-membered ring neutralizing the charge of the internucleotide phosphate monoanion. The absolute configuration at the original thymine C5 and C6 atoms is determined as 5S,6R. This is consistent with d(TpA)* arising by valence isomerization of a precursor cyclobutane photoproduct with cis-syn stereochemistry that is generated by [2 + 2] photoaddition of the thymine 5,6-double bond across the C6 and C5 positions of adenine. This mode of photoaddition should be favoured by the stacked conformation of adjacent T and A bases in B-form DNA. It is probable that the primary photoreaction is mechanistically analogous to pyrimidine dimerization despite having a much lower quantum yield.
Resumo:
The syntheses of the complexes formulated as SnMe2Cl2(Ad)2 (I), SnMe2Cl2(Ado)2 (II), SnMe2Cl2- (9-MeAd)2 (III) [Ad = adenine, Ado = adenosine, 9-MeAd = 9-methyladenine] as well as the more unexpected SnPhCl2(OH)(Ad)2·3H2O (IV) and SnPhCl3(Ado)2 (V) by reaction of SnMe2Cl2 or SnPh2Cl2 with the appropriate bases in methanol is described. 1H NMR studies suggest that coordination is through the N-7 position of the adenine base.
Resumo:
The effects of ATP, ADP, and adenosine in the processes of platelet aggregation, vasodilatation, and coronary flow have been known for many years. The sequential hydrolysis of ATP to adenosine by soluble nucleotidases constitutes the main system for rapid inactivation of circulating adenine nucleotides. Thyroid disorders affect a number of biological factors including adenosine levels in different fractions. Then, we intend to investigate if the soluble nucleotidases responsible for the ATP, ADP, and AMP hydrolysis are affected by variations in the thyroid hormone levels in blood serum from adult rats. Hyperthyroidism was induced by daily intraperitoneal injections of L-thyroxine (T4) (2.5 and 10.0 mu g/100 g body weight, respectively) for 7 or 14 days. Hypothyroidism was induced by thyroidectomy and methimazole (0.05%) added to their drinking water during 7 or 14 days. The treatments efficacy was confirmed by determination of hemodynamic parameters and cardiac hypertrophy evaluation. T4 treatment predominantly inhibited, and hypothyroidism (14 days after thyroidectomy) predominantly increased the ATP, ADP, and AMP hydrolysis in rat blood serum. These results suggest that both excess and deficiency of thyroid hormones can modulate the ATP diphosphohydrolase and 5`-nucleotidase activities in rat blood serum and consequently modulate the effects mediated by these enzymes and their products in vascular system. (C) 2010 International Union of Biochemistry and Molecular Biology, Inc.
Resumo:
The sequential Monte Carlo/CASPT2 approach was employed to investigate deactivation and emission processes from the lowest-lying pi pi * and n pi * excited states of 9H-adenine in aqueous solution. It is found that conical intersections connecting the pi pi* and n pi* states with the ground state are also present in solution, whereas the barriers for the deactivation paths are significantly smaller on solvated conditions. The large destabilization of the n pi* state found in solution possibly prevents its involvement in the deactivation photophysics and explains the change from a bi- to a mono-exponential decay for the molecule in the gas phase and solution, respectively. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The frequency of adenine mononucleotides (A), dinucleotides (AA) and clusters, and the positions of clusters, were studied in 502 molecules of the 5S rRNA.All frequencies were reduced in the evolutive lines of vertebrates, plants and fungi, in parallel with increasing organismic complexity. No change was observed in invertebrates. All frequencies were increased in mitochondria, plastids and mycoplasmas. The presumed relatives to the ancestors of the organelles, Rhodobacteria alfa and Cyanobacteria, showed intermediate values, relative to the eubacterial averages. Firmibacterid showed very high number of cluster sites.Clusters were more frequent in single-stranded regions in all organisms. The routes of organelles and mycoplasmas accummulated clusters at faster rates in double-stranded regions. Rates of change were higher for AA and clusters than for A in plants, vertebrates and organeltes, higher for cluster sites and A in mycoplasmas, and higher for AA and A in fungi. These data indicated that selection pressures acted more strongly on adenine clustering than on adenine frequency.It is proposed that AA and clusters, as sites of lower informational content. have the property of tolerating positional variation in the sites of other molecules (or other regions of the same molecule) that interact with the adenines. This reasoning was consistent with the degrees of genic polymorphism. low in plants and vertebrates and high in invertebrates. In the eubacteria endosymbiontic or parasitic to eukaryotes, the more tolerant RNA would be better adapted to interactions with the homologous nucleus-derived ribosomal proteins: the intermediate values observed in their precursors were interpreted as preadaptive.Among other groups, only the Deinococcus-Thermus eubacteria showed excessive AA and cluster contents, possibly related to their peculiar tolerance to mutagens, and the Ciliates showed excessive AA contents, indicative of retention of primitive characters.
Resumo:
The reduction of guanine was studied by microelectrode voltammetry in the room temperature ionic liquids (RTILs) N-hexyltriethylammonium bis (trifluoromethanesulfonyl) imide [N6,2,2,2][N(Tf)2], 1-butyl-3-methylimidazolium hexafluorosphosphate [C4mim][PF6], N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide [C4mpyrr][N(Tf)2], 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C4mim][N(Tf)2], N-butyl-N-methyl-pyrrolidinium dicyanamide [C4mpyrr][N(NC)2] and tris(P-hexyl)-tetradecylphosphonium trifluorotris(pentafluoroethyl)phosphate [P14,6,6,6][FAP] on a platinum microelectrode. In [N6,2,2,2][NTf2] and [P14,6,6,6][FAP], but not in the other ionic liquids studied, guanine reduction involves a one-electron, diffusion-controlled process at very negative potential to produce an unstable radical anion, which is thought to undergo a dimerization reaction, probably after proton abstraction from the cation of the ionic liquid. The rate of this subsequent reaction depends on the nature of the ionic liquid, and it is faster in the ionic liquid [P14,6,6,6][FAP], in which the formation of the resulting dimer can be voltammetrically monitored at less negative potentials than required for the reduction of the parent molecule. Adenine showed similar behaviour to guanine but the pyrimidines thymine and cytosine did not; thymine was not reduced at potentials less negative than required for solvent (RTIL) decomposition while only a poorly defined wave was seen for cytosine. The possibility for proton abstraction from the cation in [N6,2,2,2][NTf2] and [P14,6,6,6][FAP] is noted and this is thought to aid the electrochemical dimerization process. The resulting rapid reaction is thought to shift the reduction potentials for guanine and adenine to lower values than observed in RTILs where the scope for proton abstraction is not present. Such shifts are characteristic of so-called EC processes where reversible electron transfer is followed by a chemical reaction. © 2009 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this contribution, the multiconfigurational second-order perturbation theory method based on a complete active space reference wave function (CASSCF/CASPT2) is applied to study all possible single and double proton/hydrogen transfers between the nucleobases in the adenine-thymine (AT) base pair, analyzing the role of excited states with different nature [localized (LE) and charge transfer (CT)] and considering concerted as well as step-wise mechanisms. According to the findings, once the lowest excited states, localized in adenine, are populated during UV irradiation of the Watson-Crick base pair, the proton transfer in the N-O bridge does not require high energy in order to populate a CT state. The latter state will immediately relax toward a crossing with the ground state, which will funnel the system to either the canonical structure or the imino-enol tautomer. The base pair is also capable of repairing itself easily since the imino-enol species is unstable to thermal conversion.
Resumo:
Adenine overload promotes intratubular crystal precipitation and interstitial nephritis. We showed recently that these abnormalities are strongly attenuated in mice knockout for Toll-like receptors-2, -4, MyD88, ASC, or caspase-1. We now investigated whether NF-κB activation also plays a pathogenic role in this model. Adult male Munich-Wistar rats were distributed among three groups: C (n = 17), receiving standard chow; ADE (n = 17), given adenine in the chow at 0.7% for 1 wk and 0.5% for 2 wk; and ADE + pyrrolidine dithiocarbamate (PDTC; n = 14), receiving adenine as above and the NF-κB inhibitor PDTC (120 mg•kg-1•day-1 in the drinking water). After 3 wk, widespread crystal deposition was seen in tubular lumina and in the renal interstitium, along with granuloma formation, collagen accumulation, intense tubulointerstitial proliferation, and increased interstitial expression of inflammatory mediators. Part of the crystals were segregated from tubular lumina by a newly formed cell layer and, at more advanced stages, appeared to be extruded to the interstitium. p65 nuclear translocation and IKK-α increased abundance indicated activation of the NF-κB system. PDTC treatment prevented p65 migration and normalized IKK-α, limited crystal shift to the interstitium, and strongly attenuated interstitial fibrosis/inflammation. These findings indicate that the complex inflammatory phenomena associated with this model depend, at least in part, on NF-κB activation, and suggest that the NF-κB system may become a therapeutic target in the treatment of chronic kidney disease.