962 resultados para Cytochrome oxidase II
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The state of São Paulo has four main drainages: Paraná river, Paraíba do Sul river, Ribeira do Iguape river and coastal rivers. The Paraíba do Sul river is born in Sao Paulo and drains an important range of land east of the state. Its ichthyofauna has some similarities and many differences from the continental and coastal drainages which highlights the importance of this study. Surveys conducted in the ichthyofauna of this basin, as in other large river basins in Brazil, is still incomplete. Moreover, there is no consensus about the taxonomic status of many species listed in these surveys. Considering the promising use of DNA barcode as a global system for species identification, the present study is aimed to establishing an inventory of the ichthyofauna of the São Paulo portion of the river Paraíba do Sul and simultaneously build a DNA barcode reference sequence library for fish found. Were obtained and analyzed 354 sequences of the gene cytochrome oxidase c subunit I (COI) belonging to 66 species of São Paulo portion of the Paraíba do Sul river. The average K2P distance between individuals within species of this basin was 0.48%, and 9,87% between species within a genus. Five pairs of species (10 species) showed low levels of interspecific genetic divergence (<2%),but all could be correctly identified. This study showed that the fish species analyzed could be identified efficiently through the use of barcode generating data that can provide information for further studies of this fauna, besides contributing to the global initiative to characterize the species of fish in the world of a molecular point of view. Five pairs of species (10 species) showed low levels of interspecific genetic divergence (<2%), but all could be correctly identified. This study showed that the fish species analyzed could be identified efficiently through the use of barcode generating data that can provide subsidies for further studies in this fauna, as well as ...
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The rock-wallaby genus Petrogale comprises a group of habitat-specialist macropodids endemic to Australia. Their restriction to rocky outcrops, with infrequent interpopulation dispersal, has been suggested as the cause of their recent and rapid diversification. Molecular phylogenetic relationships within and among species of Petrogale were analysed using mitochondrial (cytochrome oxidase c subunit 1, cytochrome b. NADH dehydrogenase subunit 2) and nuclear (omega-globin intron, breast and ovarian cancer susceptibility gene) sequence data with representatives that encompassed the morphological and chromosomal variation within the genus, including for the first time both Petrogale concinna and Petrogale purpureicollis. Four distinct lineages were identified, (1) the brachyotis group, (2) Petrogale persephone, (3) Petrogale xanthopus and (4) the lateralis-penicillata group. Three of these lineages include taxa with the ancestral karyotype (2n = 22). Paraphyletic relationships within the brachyotis group indicate the need for a focused phylogeographic study. There was support for P. purpureicollis being reinstated as a full species and P. concinna being placed within Petrogale rather than in the monotypic genus Peradorcas. Bayesian analyses of divergence times suggest that episodes of diversification commenced in the late Miocene-Pliocene and continued throughout the Pleistocene. Ancestral state reconstructions suggest that Petrogale originated in a mesic environment and dispersed into more arid environments, events that correlate with the timing of radiations in other arid zone vertebrate taxa across Australia. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.
Resumo:
Redescriptions of Bizarrifrons magus (Nitzsch [in Giebel], 1866), the type species of Bizarrifrons, and B. picturatus Carriker & Diaz-Ungria, 1961 are given based on material from their type hosts. The nymphal instars of these two species are described and illustrated for the first time. Also, three new species are named and described: B. latifrons, from the russet-backed oropendola, Psarocolius angustifrons alfredi (Des Murs, 1856); B. wecksteini, from the Amazonian oropendola, Psarocolius b. bifasciatus (Spix, 1824); and B. quasisymmetricus, from the solitary cacique, Cacicus solitarius (Vieillot, 1816) (Passeriformes: Icteridae). Two species-groups are proposed, and a checklist and a key for the species of Bizarrifrons are also included. Sequences of a portion of the mitochondrial cytochrome oxidase I (COI) and the nuclear elongation factor 1 alpha (EF-1 alpha) genes for two species are given for the first time in this genus.
Resumo:
Surveys were conducted in Brazil, Benin and Tanzania to collect predatory mites as candidates for control of the coconut mite Aceria guerreronis Keifer, a serious pest of coconut fruits. At all locations surveyed, one of the most dominant predators on infested coconut fruits was identified as Neoseiulus baraki Athias-Henriot, based on morphological similarity with regard to taxonomically relevant characters. However, scrutiny of our own and published descriptions suggests that consistent morphological differences may exist between the Benin population and those from the other geographic origins. In this study, we combined three methods to assess whether these populations belong to one species or a few distinct, yet closely related species. First, multivariate analysis of 32 morphological characters showed that the Benin population differed from the other three populations. Second, DNA sequence analysis based on the mitochondrial cytochrome oxidase subunit I (COI) showed the same difference between these populations. Third, cross-breeding between populations was unsuccessful in all combinations. These data provide evidence for the existence of cryptic species. Subsequent morphological research showed that the Benin population can be distinguished from the others by a new character (not included in the multivariate analysis), viz. the number of teeth on the fixed digit of the female chelicera.
Resumo:
Hippolyte obliquimanus is a marine shrimp reported from the Caribbean Sea and Brazil. The literature provides indications for morphological variation between populations from those regions and the species has a troubled taxonomic history. The aims of this study were to analyse morphological and genetic variation in the populations of H. obliquimanus from Brazil and the Caribbean Sea and to verify if those might support separation of H. obliquimanus into two or more species. This hypothesis was tested with the analysis of morphological and genetic data (mitochondrial gene 16S and the barcode region Cytochrome Oxidase I). The material analysed was obtained from samples and from loans of zoological collections. The rostrum as well as pereiopods 3, 4, and 5 were the adult morphological characters that showed variation, but this occurred in samples from both regions, Brazil and the Caribbean Sea. The sequences of the 16S gene were identical among all specimens analysed. There was, however, variation among the sequences of the barcoding gene COI (<2.0%); this divergence separated the specimens into two groups (Brazil versus the Caribbean) and these groups did not share haplotypes. In conclusion, specimens from the regions analysed showed both morphological and genetic variation, but these did not support the separation of H. obliquimanus into two or more species.
Resumo:
Abstract Background Effective malaria control relies on accurate identification of those Anopheles mosquitoes responsible for the transmission of Plasmodium parasites. Anopheles oswaldoi s.l. has been incriminated as a malaria vector in Colombia and some localities in Brazil, but not ubiquitously throughout its Neotropical range. This evidence together with variable morphological characters and genetic differences supports that An. oswaldoi s.l. compromises a species complex. The recent fully integrated redescription of An. oswaldoi s.s. provides a solid taxonomic foundation from which to molecularly determine other members of the complex. Methods DNA sequences of the Second Internal Transcribed Spacer (ITS2 - rDNA) (n = 192) and the barcoding region of the Cytochrome Oxidase I gene (COI - mtDNA) (n = 110) were generated from 255 specimens of An. oswaldoi s.l. from 33 localities: Brazil (8 localities, including the lectotype series of An. oswaldoi), Ecuador (4), Colombia (17), Trinidad and Tobago (1), and Peru (3). COI sequences were analyzed employing the Kimura-two-parameter model (K2P), Bayesian analysis (MrBayes), Mixed Yule-Coalescent model (MYC, for delimitation of clusters) and TCS genealogies. Results Separate and combined analysis of the COI and ITS2 data sets unequivocally supported four separate species: two previously determined (An. oswaldoi s.s. and An. oswaldoi B) and two newly designated species in the Oswaldoi Complex (An. oswaldoi A and An. sp. nr. konderi). The COI intra- and inter-specific genetic distances for the four taxa were non-overlapping, averaging 0.012 (0.007 to 0.020) and 0.052 (0.038 to 0.064), respectively. The concurring four clusters delineated by MrBayes and MYC, and four independent TCS networks, strongly confirmed their separate species status. In addition, An. konderi of Sallum should be regarded as unique with respect to the above. Despite initially being included as an outgroup taxon, this species falls well within the examined taxa, suggesting a combined analysis of these taxa would be most appropriate. Conclusions: Through novel data and retrospective comparison of available COI and ITS2 DNA sequences, evidence is shown to support the separate species status of An. oswaldoi s.s., An. oswaldoi A and An. oswaldoi B, and at least two species in the closely related An. konderi complex (An. sp. nr. konderi, An. konderi of Sallum). Although An. oswaldoi s.s. has never been implicated in malaria transmission, An. oswaldoi B is a confirmed vector and the new species An. oswaldoi A and An. sp. nr. konderi are circumstantially implicated, most likely acting as secondary vectors.
Resumo:
Longstanding taxonomic ambiguity and uncertainty exist in the identification of the common (M. mustelus) and blackspotted (M. punctulatus) smooth-hound in the Adriatic Sea. The lack of a clear and accurate method of morphological identification, leading to frequent misidentification, prevents the collation of species-specific landings and survey data for these fishes and hampers the delineation of the distribution ranges and stock boundaries of the species. In this context, adequate species-specific conservation and management strategies can not be applied without risks of population declining and local extinction. In this thesis work I investigated the molecular ecology of the two smooth-hound sharks which are abundant in the demersal trawl surveys carried out in the NC Adriatic Sea to monitor and assess the fishery resources. Ecological and evolutionary relationships were assessed by two molecular tests: a DNA barcoding analysis to improve species identification (and consequently the knowledge of their spatial ecology and taxonomy) and a hybridization assay based on the nuclear codominant marker ITS2 to evaluate reproductive interactions (hybridization or gene introgression). The smooth-hound sharks (N=208) were collected during the MEDITS 2008 and 2010 campaigns along the Italian and Croatian coasts of the Adriatic Sea, in the Sicilian Channel and in the Algerian fisheries. Since the identification based on morphological characters is not strongly reliable, I performed a molecular identification of the specimens producing for each one the cytochrome oxidase subunit 1 (COI) gene sequence (ca. 640 bp long) and compared them with reference sequences from different databases (GenBank and BOLD). From these molecular ID data I inferred the distribution of the two target species in the NC Adriatic Sea. In almost the totality of the MEDITS hauls I found no evidence of species sympatry. The data collected during the MEDITS survey showed an almost different distribution of M. mustelus (confined along the Italian coasts) and M. punctulatus (confined along the Croatian coasts); just one sample (Gulf of Venice, where probably the ranges of the species overlap) was found to have catches of both the species. Despite these data results suggested no interaction occurred between my two target species at least during the summertime (the period in which MEDITS survey is carried out), I still wanted to know if there were inter-species reproductive interactions so I developed a simple molecular genetic method to detect hybridization. This method is based on DNA sequence polymorphism among species in the nuclear ribosomal Internal Transcribed Spacer 2 locus (ITS2). Its application to the 208 specimens collected raised important questions regarding the ecology of this two species in the Adriatic Sea. In fact results showed signs of hybridization and/or gene introgression in two sharks collected during the trawl survey of 2008 and one collected during the 2010 one along the Italian and Croatian coasts. In the case that it will be confirmed the hybrid nature of these individuals, a spatiotemporal overlapping of the mating behaviour and ecology must occur. At the spatial level, the northern part of the Adriatic Sea (an area where the two species occur with high frequency of immature individuals) could likely play the role of a common nursery area for both species.
Resumo:
The Brachiopoda of the Marine Protected Area “Secche di Tor Paterno”, Central Tyrrhenian Sea, have been investigated in order to give a first glance of the diversity of the brachiopods of this area and provide a new report on the Mediterranean Brachiopod fauna. Four species were reported: Novocrania anomala (Müller, 1776), Megathiris detruncata (Gmelin, 1790), Joania cordata (Risso,1826) and Argyrotheca cuneata (Risso,1826). For all the four species a morphological analysis was carried out. For the two most abundant species, J.cordata and A. cuneata, a morphometric study, based on thickness/width and length/width scattergrams, was carried out, in order to investigate their variability. Size-frequency distributions relative to the three dimensions of the shell were also computed, aimed at a evaluation of population dynamics of these two species. The results showed that, for both species, the parameters which most determine the rise of the shell during the growth of animal are width and length and that frequency distributions are mainly bi- or plurymodal and that they are difficult to interpret, as reported by other studies. Analysis of drill holes found on the shell of some specimens of the two same species revealed a predatory origin and that three different predators are responsible for them. Partial sequences of two different genetic markers, the Internal Transcribed Spacer 1 (ITS1) and the cytochrome oxidase subunit 1 (COI), were used to investigate the phylogenetic relationship between two populations of the eurybathic brachiopod species Gryphus vitreus (Born,1778) across the strait of Gibraltar. This represents the first genetic population study on brachiopods. Results from AMOVA and Bayesian analysis performed on 31 specimens highlighted no genetic differentiation indicating a likely panmixia, dispite the lecitotrophic development of the species.