964 resultados para Cylindrical Pores
Resumo:
Utilising Jones' method associated with the Wiener-Hopf technique, explicit solutions are obtained for the temperature distributions on the surface of a cylindrical rod without an insulated core as well as that inside a cylindrical rod with an insulated inner core when the rod, in either of the two cases, is allowed to enter, with a uniform speed, into two different layers of fluid with different cooling abilities. Simple expressions are derived for the values of the sputtering temperatures of the rod at the points of entry into the respective layers, assuming the upper layer of the fluid to be of finite depth and the lower of infinite extent. Both the problems are solved through a three-part Wiener-Hopf problem of special type and the numerical results under certain special circumstances are obtained and presented in tabular forms.
Resumo:
Buckling of discretely stiffened composite cylindrical panels made of repeated sublaminate construction is studied using a finite element method. In repeated sublaminate construction, a full laminate is obtained by repeating a basic sublaminate, which has a smaller number of plies. This paper deals with the determination of the optimum lay-up for buckling by ranking of such stiffened (longitudinal and hoop) composite cylindrical panels. For this purpose we use the particularized form of a four-noded, 48 degrees of freedom doubly curved quadrilateral thin shell finite element together with a fully compatible two-noded, 16 degrees of freedom composite stiffener element. The computer program developed has been used, after extensive checking for correctness, to obtain an optimum orientation scheme of the plies in the sublaminate so as to achieve maximum buckling load for a specified thickness of typical stiffened composite cylindrical panels.
Resumo:
In this paper, the flow due to a rotating disk non-symmetrically placed with respect to the height of the enclosing stationary cylinder is analyzed numerically. The full Navier-Stokes equations expressed in terms of stream function and vorticity are solved by successive over-relaxation for different disk radii, its distance from the bottom casing and rotational Reynolds numbers. It is observed that the flow pattern is strongly influenced by the size and the position of the disk. When the disk is very close to the top casing and small in radius, there are two regions of different scales and the vortices in the region of small scale are trapped between the disk and the top casing. Further, the variation of the moment coefficient is determined for different positions and sizes of the rotating disk. The calculations shows that the frictional torque increases rapidly, when the disk approaches the top casing. This finding is of importance for the design of vertical rotating disk reactors applied in chemical vapor deposition.
Resumo:
Lamination-dependent shear corrective terms in the analysis of flexure of laminates are derived from a priori assumed linear thicknesswise distributions for gradients of transverse shear stresses and using them in the two in-plane equilibrium equations of elasticity in each ply. Adding these corrective terms to (i) Classical Laminate Plate Theory (CLPT) displacements and (ii) Classical Laminate Shear Deformation Theory (CLSDT) displacements, four new refined lamination-dependent shear deformation models for angle-ply laminates are developed. Performance of these models is evaluated by comparing the results from these models with those from exact elasticity solutions for antisymmetric 2-ply laminates and for 4-ply [15/-15](s) laminates. In general, the model with shear corrective terms based on CLPT and added to CLSDT displacements is sufficient and predicts good estimates, both qualitatively and quantitatively, for all displacements and stresses.
Resumo:
The structure of ordered phases that are formed when nitrogen is confined in slit graphite pores of height h is investigated using Monte Carlo simulations. The pore wall consists of a single-structured graphite sheet. Canonical ensemble simulations are carried out for temperatures ranging from 15 to 70Kwith layer density distributions, in-plane, out-of-plane angular distributions and snapshots evaluated at different temperatures. At each pore height the pore densities are obtained from independent grand ensemble simulations. At the smallest pore height studied (h)7 Å), where a single layer of molecules is accommodated at the center of the pore, the orientations are predominantly wall parallel, forming a biaxially incommensurate herringbone structure.Whentwo or more fluid layers are formed in the slit pore, the orientation of molecules adsorbed next to the wall can exist in either the herringbone or hexagonal phases. In all the multilayered cases studied, with the exception of the h ) 10 Å pore, where both wall layers form a commensurate herringbone structure, the low-temperature wall structures are incommensurate, possessing 6-fold hexagonal symmetry. The presence of the pinwheel structures, which were observed at low temperatures in the h ) 12 Å and h ) 14 Å pores, is determined by the pore height or the proximity and/or density of the adjacent fluid layers when inner layers are present.
Resumo:
Analytical expressions are found for the wavenumbers and resonance frequencies in flexible, orthotropic shells using the asymptotic methods. These expressions are valid for arbitrary circumferential orders n. The Donnell-Mushtari shell theory is used to model the dynamics of the cylindrical shell. Initially, an in vacuo cylindrical isotropic shell is considered and expressions for all the wavenumbers (bending, near-field bending, longitudinal and torsional) are found. Subsequently, defining a suitable orthotropy parameter epsilon, the problem of wave propagation in an orthotropic shell is posed as a perturbation on the corresponding problem for an isotropic shell. Asymptotic expressions for the wavenumbers in the in vacuo orthotropic shell are then obtained by treating epsilon as an expansion parameter. In both cases (isotropy and orthotropy), a frequency-scaling parameter (eta) and Poisson's ratio (nu) are used to find elegant expansions in the different frequency regimes. The asymptotic expansions are compared with numerical solutions in each of the cases and the match is found to be good. The main contribution of this work lies in the extension of the existing literature by developing closed-form expressions for wavenumbers with arbitrary circumferential orders n in the case of both, isotropic and orthotropic shells. Finally, we present natural frequency expressions in finite shells (isotropic and orthotropic) for the axisymmetric mode and compare them with numerical and ANSYS results. Here also, the comparison is found to be good. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Sparking potentials have been measured in nitrogen and dry air between coaxial cylindrical electrodes for values of n = R2/R1 = approximately 1 to 30 (R1 = inner electrode radius, R2 = outer electrode radius) in the presence of crossed uniform magnetic fields. The magnetic flux density was varied from 0 to 3000 Gauss. It has been shown that the minimum sparking potentials in the presence of the crossed magnetic field can be evaluated on the basis of the equivalent pressure concept when the secondary ionization coefficient does not vary appreciably with B/p (B = magnetic flux density, p = gas pressure). The values of secondary ionization coefficients �¿B in nitrogen in crossed fields calculated from measured values of sparking potentials and Townsend ionization coefficients taken from the literature, have been reported. The calculated values of collision frequencies in nitrogen from minimum sparking potentials in crossed fields are found to increase with increasing B/p at constant E/pe (pe = equivalent pressure). Studies on the similarity relationship in crossed fields has shown that the similarity theorem is obeyed in dry air for both polarities of the central electrode in crossed fields.
Resumo:
Analytical expressions are found for the wavenumbers in an infinite flexible in vacuo I fluid-filled circular cylindrical shell based on different shell-theories using asymptotic methods. Donnell-Mushtari theory (the simplest shell theory) and four higher order theories, namely Love-Timoshenko, Goldenveizer-Novozhilov, Flugge and Kennard-simplified are considered. Initially, in vacuo and fluid-coupled wavenumber expressions are presented using the Donnell-Mushtari theory. Subsequently, the wavenumbers using the higher order theories are presented as perturbations on the Donnell-Mushtari wavenumbers. Similarly, expressions for the resonance frequencies in a finite shell are also presented, using each shell theory. The basic differences between the theories being what they are, the analytical expressions obtained from the five theories allow one to see how these differences propagate into the asymptotic expansions. Also, they help to quantify the difference between the theories for a wide range of parameter values such as the frequency range, circumferential order, thickness ratio of the shell, etc.
Resumo:
Analytical expressions are found for the coupled wavenumbers in flexible, fluid-filled, circular cylindrical orthotropic shells using the asymptotic methods. These expressions are valid for arbitrary circumferential orders. The Donnell-Mushtari shell theory is used to model the shell and the effect of the fluid is introduced through the fluid-loading parameter mu. The orthotropic problem is posed as a perturbation on the corresponding isotropic problem by defining a suitable orthotropy parameter epsilon, which is a measure of the degree of orthotropy. For the first study, an isotropic shell is considered (by setting epsilon = 0) and expansions are found for the coupled wavenumbers using a regular perturbation approach. In the second study, asymptotic expansions are found for the coupled wavenumbers in the limit of small orthotropy (epsilon << 1). For each study, isotropy and orthotropy, expansions are found for small and large values of the fluid-loading parameter mu. All the asymptotic solutions are compared with numerical solutions to the coupled dispersion relation and the match is seen to be good. The differences between the isotropic and orthotropic solutions are discussed. The main contribution of this work lies in extending the existing literature beyond in vacuo studies to the case of fluid-filled shells (isotropic and orthotropic).
Resumo:
Transmission loss (TL) of an elliptical cylindrical chamber muffler having a single side/end inlet and multiple side/end outlet is analyzed by means of the 3-D semi-analytical formulation based upon the modal expansion (in terms of the angular and radial Mathieu functions) and the Green's function. The acoustic pressure response obtained in terms of Green's function is integrated over surface area of the side/end ports (modeled as rigid pistons) and upon subsequent division by the port area, yields the acoustic pressure response or impedance Z] matrix parameters due to the uniform piston-driven model. The 3-D semi-analytical results are found to be in excellent agreement with the results obtained by means of 3-D FEA (SYSNOISE) simulations, thereby validating the semi-analytical procedure suggested in this work. Parametric studies such as the effect of chamber length (L), angular and axial locations of the ports, interchanging the locations of inlet and outlet ports as well as the addition of an outlet port for double outlet mufflers on the TL performance are reported, thereby leading to the formulation of design guidelines for obtaining muffler configurations exhibiting a broad-band TL spectrum. One such configuration is an axially long chamber having side-inlet and side-outlet ports such that one of the side ports is located at half the axial length on themajor/minor axis and the other side port is located at three-quarters (or one-quarter) of the axial length on the minor/major axis. (C) 2012 Institute of Noise Control Engineering.
Resumo:
A combined 3D finite element simulation and experimental study of interaction between a notch and cylindrical voids ahead of it in single edge notch (tension) aluminum single crystal specimens is undertaken in this work. Two lattice orientations are considered in which the notch front is parallel to the crystallographic 10 (1) over bar] direction. The flat surface of the notch coincides with the (010) plane in one orientation and with the (1 (1) over bar1) plane in the other. Three equally spaced cylindrical voids are placed directly ahead of the notch tip. The predicted load-displacement curves, slip traces, lattice rotation and void growth from the finite element analysis are found to be in good agreement with the experimental observations for both the orientations. Finite element results show considerable through-thickness variation in both hydrostatic stress and equivalent plastic slip which, however, depends additionally on the lattice orientation. The through-thickness variation in the above quantities affects the void growth rate and causes it to differ from the center-plane to the free surface of the specimen. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a suitable nondimensional `orthotropy parameter' is defined and asymptotic expansions are found for the wavenumbers in in vacuo and fluid-filled orthotropic circular cylindrical shells modeled by the Donnell-Mushtari theory. Here, the elastic moduli in the two directions are greatly different; the particular case of E-x >> E-theta is studied in detail, i.e., the elastic modulus in the longitudinal direction is much larger than the elastic modulus in the circumferential direction. These results are compared with the corresponding results for a `slightly orthotropic' shell (E-x approximate to E-theta) and an isotropic shell. The novelty of this presentation lies in obtaining closed-form expansions for the in vacuo and coupled wavenumbers in an orthotropic shell using perturbation methods aiding in a better physical understanding of the problem.