990 resultados para Cyclone tracks
Resumo:
There are large uncertainties in the circulation response of the atmosphere to climate change. One manifestation of this is the substantial spread in projections for the extratropical storm tracks made by different state-of-the-art climate models. In this study we perform a series of sensitivity experiments, with the atmosphere component of a single climate model, in order to identify the causes of the differences between storm track responses in different models. In particular, the Northern Hemisphere wintertime storm tracks in the CMIP3 multi-model ensemble are considered. A number of potential physical drivers of storm track change are identified and their influence on the storm tracks is assessed. The experimental design aims to perturb the different physical drivers independently, by magnitudes representative of the range of values present in the CMIP3 model runs, and this is achieved via perturbations to the sea surface temperature and the sea-ice concentration forcing fields. We ask the question: can the spread of projections for the extratropical storm tracks present in the CMIP3 models be accounted for in a simple way by any of the identified drivers? The results suggest that, whilst the changes in the upper-tropospheric equator-to-pole temperature difference have an influence on the storm track response to climate change, the large spread of projections for the extratropical storm track present in the northern North Atlantic in particular is more strongly associated with changes in the lower-tropospheric equator-to-pole temperature difference.
Resumo:
Flow in geophysical fluids is commonly summarized by coherent streams, for example conveyor belt flows in extratropical cyclones or jet streaks in the upper troposphere. Typically, parcel trajectories are calculated from the flow field and subjective thresholds are used to distinguish coherent streams of interest. This methodology contribution develops a more objective approach to distinguish coherent airstreams within extratropical cyclones. Agglomerative clustering is applied to trajectories along with a method to identify the optimal number of cluster classes. The methodology is applied to trajectories associated with the low-level jets of a well-studied extratropical cyclone. For computational efficiency, a constraint that trajectories must pass through these jet regions is applied prior to clustering; the partitioning into different airstreams is then performed by the agglomerative clustering. It is demonstrated that the methodology can identify the salient flow structures of cyclones: the warm and cold conveyor belts. A test focusing on the airstreams terminating at the tip of the bent-back front further demonstrates the success of the method in that it can distinguish fine-scale flow structure such as descending sting jet airstreams.
Resumo:
How tropical cyclone (TC) activity in the northwestern Pacific might change in a future climate is assessed using multidecadal Atmospheric Model Intercomparison Project (AMIP)-style and time-slice simulations with the ECMWF Integrated Forecast System (IFS) at 16-km and 125-km global resolution. Both models reproduce many aspects of the present-day TC climatology and variability well, although the 16-km IFS is far more skillful in simulating the full intensity distribution and genesis locations, including their changes in response to El Niño–Southern Oscillation. Both IFS models project a small change in TC frequency at the end of the twenty-first century related to distinct shifts in genesis locations. In the 16-km IFS, this shift is southward and is likely driven by the southeastward penetration of the monsoon trough/subtropical high circulation system and the southward shift in activity of the synoptic-scale tropical disturbances in response to the strengthening of deep convective activity over the central equatorial Pacific in a future climate. The 16-km IFS also projects about a 50% increase in the power dissipation index, mainly due to significant increases in the frequency of the more intense storms, which is comparable to the natural variability in the model. Based on composite analysis of large samples of supertyphoons, both the development rate and the peak intensities of these storms increase in a future climate, which is consistent with their tendency to develop more to the south, within an environment that is thermodynamically more favorable for faster development and higher intensities. Coherent changes in the vertical structure of supertyphoon composites show system-scale amplification of the primary and secondary circulations with signs of contraction, a deeper warm core, and an upward shift in the outflow layer and the frequency of the most intense updrafts. Considering the large differences in the projections of TC intensity change between the 16-km and 125-km IFS, this study further emphasizes the need for high-resolution modeling in assessing potential changes in TC activity.
Resumo:
This study has explored the prediction errors of tropical cyclones (TCs) in the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS) for the Northern Hemisphere summer period for five recent years. Results for the EPS are contrasted with those for the higher-resolution deterministic forecasts. Various metrics of location and intensity errors are considered and contrasted for verification based on IBTrACS and the numerical weather prediction (NWP) analysis (NWPa). Motivated by the aim of exploring extended TC life cycles, location and intensity measures are introduced based on lower-tropospheric vorticity, which is contrasted with traditional verification metrics. Results show that location errors are almost identical when verified against IBTrACS or the NWPa. However, intensity in the form of the mean sea level pressure (MSLP) minima and 10-m wind speed maxima is significantly underpredicted relative to IBTrACS. Using the NWPa for verification results in much better consistency between the different intensity error metrics and indicates that the lower-tropospheric vorticity provides a good indication of vortex strength, with error results showing similar relationships to those based on MSLP and 10-m wind speeds for the different forecast types. The interannual variation in forecast errors are discussed in relation to changes in the forecast and NWPa system and variations in forecast errors between different ocean basins are discussed in terms of the propagation characteristics of the TCs.
Resumo:
Seasonal forecast skill of the basinwide and regional tropical cyclone (TC) activity in an experimental coupled prediction system based on the ECMWF System 4 is assessed. As part of a collaboration between the Center for Ocean–Land–Atmosphere Studies (COLA) and the ECMWF called Project Minerva, the system is integrated at the atmospheric horizontal spectral resolutions of T319, T639, and T1279. Seven-month hindcasts starting from 1 May for the years 1980–2011 are produced at all three resolutions with at least 15 ensemble members. The Minerva system demonstrates statistically significant skill for retrospective forecasts of TC frequency and accumulated cyclone energy (ACE) in the North Atlantic (NA), eastern North Pacific (EP), and western North Pacific. While the highest scores overall are achieved in the North Pacific, the skill in the NA appears to be limited by an overly strong influence of the tropical Pacific variability. Higher model resolution improves skill scores for the ACE and, to a lesser extent, the TC frequency, even though the influence of large-scale climate variations on these TC activity measures is largely independent of resolution changes. The biggest gain occurs in transition from T319 to T639. Significant skill in regional TC forecasts is achieved over broad areas of the Northern Hemisphere. The highest-resolution hindcasts exhibit additional locations with skill in the NA and EP, including land-adjacent areas. The feasibility of regional intensity forecasts is assessed. In the presence of the coupled model biases, the benefits of high resolution for seasonal TC forecasting may be underestimated.
Resumo:
This study aims at the determination of a Fram Strait cyclone track and of the cyclone’s impact on ice edge, drift, divergence, and concentration. A 24 h period on 13–14 March 2002 framed by two RADARSAT images is analyzed. Data are included from autonomous ice buoys, a research vessel, Special Sensor Microwave Imager (SSM/I) and QuikSCAT satellite, and the operational European Centre for Medium-Range Weather Forecasts (ECMWF) model. During this 24 h period the cyclone moved northward along the western ice edge in the Fram Strait, crossed the northern ice edge, made a left-turn loop with 150 km diameter over the sea ice, and returned to the northern ice edge. The ECMWF analysis places the cyclone track 100 km too far west over the sea ice, a deviation which is too large for representative sea ice simulations. On the east side of the northward moving cyclone, the ice edge was pushed northward by 55 km because of strong winds. On the rear side, the ice edge advanced toward the open water but by a smaller distance because of weaker winds there. The ice drift pattern as calculated from the ice buoys and the two RADARSAT images is cyclonically curved around the center of the cyclone loop. Ice drift divergence shows a spatial pattern with divergence in the loop center and a zone of convergence around. Ice concentration changes as retrieved from SSM/I data follow the divergence pattern such that sea ice concentration increased in areas of divergence and decreased in areas of convergence.
Resumo:
Explosive cyclones are intense extra-tropical low pressure systems featuring large deepening rates. In the Euro-Atlantic sector, they are a major source of life-threatening weather impacts due to their associated strong wind gusts, heavy precipitation and storm surges. The wintertime variability of the North Atlantic cyclonic activity is primarily modulated by the North Atlantic Oscillation (NAO). In this study, we investigate the interannual and multi-decadal variability of explosive North Atlantic cyclones using track density data from two reanalysis datasets (NCEP and ERA-40) and a control simulation of an atmosphere/ocean coupled General Circulation Model (GCM—ECHAM5/MPIOM1). The leading interannual and multi-decadal modes of variability of explosive cyclone track density are characterized by a strengthening/weakening pattern between Newfoundland and Iceland, which is mainly modulated by the NAO at both timescales. However, the NAO control of interannual cyclone variability is not stationary in time and abruptly fluctuates during periods of 20–25 years long both in NCEP and ECHAM5/MPIOM1. These transitions are accompanied by structural changes in the leading mode of explosive cyclone variability, and by decreased/enhanced baroclinicity over the sub-polar/sub-tropical North Atlantic. The influence of the ocean is apparently important for both the occurrence and persistence of such anomalous periods. In the GCM, the Atlantic Meridional Overturning Circulation appears to influence the large-scale baroclinicity and explosive cyclone development over the North Atlantic. These results permit a better understanding of explosive cyclogenesis variability at different climatic timescales and might help to improve predictions of these hazardous events.
Resumo:
Numerical simulations are carried out to examine the role of the Kuo and Kain-Fritsch (KF) cumulus parameterization schemes and dry dynamics on a cyclone development, in a weak baroclinic atmosphere, over subtropical South Atlantic Ocean. The initial phase of the cyclone development is investigated with a coarse horizontal mesh (75 km) and when the cyclone reaches the mature stage two different horizontal resolutions are used (75 and 25 km). The best performance simulation for the cyclone initial phase occurs when the Kuo convective scheme is applied, and this may be attributed to a greater diabatic warming in the troposphere. On the other hand, the dry simulation is not capable of simulating the correct location and intensity of the cyclone in its initial phase. During the mature phase, a cyclone over deepening occurs in the Kuo scheme experiment associated with larger latent heat release in a deep vertical column. The presence of downdraft currents in the KF scheme, which acts to cool and dry the lower levels, is essential to stabilize the atmosphere and to reproduce the nearest observation cyclone deepening rate. The largest cyclone deepening is found in the Kuo scheme high resolution experiment. This suggests that the KF convective scheme is less sensitive to the horizontal grid resolution. It was also revealed that the diabatic processes are crucial to simulate the observed features of this marine cyclone over subtropical region.
Resumo:
Based on previous observational studies on cold extreme events over southern South America, some recent studies suggest a possible relationship between Rossby wave propagation remotely triggered and the occurrence of frost. Using the concept of linear theory of Rossby wave propagation, this paper analyzes the propagation of such waves in two different basic states that correspond to austral winters with maximum and minimum generalized frost frequency of occurrence in the Wet Pampa (central-northwest Argentina). In order to determine the wave trajectories, the ray tracing technique is used in this study. Some theoretical discussion about this technique is also presented. The analysis of the basic state, from a theoretical point of view and based on the calculation of ray tracings, corroborates that remotely excited Rossby waves is the mechanism that favors the maximum occurrence of generalized frosts. The basic state in which the waves propagate is what conditions the places where they are excited. The Rossby waves are excited in determined places of the atmosphere, propagating towards South America along the jet streams that act as wave guides, favoring the generation of generalized frosts. In summary, this paper presents an overview of the ray tracing technique and how it can be used to investigate an important synoptic event, such as frost in a specific region, and its relationship with the propagation of large scale planetary waves.
Resumo:
The high dependence of herbivorous insects on their host plants implies that plant invaders can affect these insects directly, by not providing a suitable habitat, or indirectly, by altering host plant availability. In this study, we sampled Asteraceae flower heads in cerrado remnants with varying levels of exotic grass invasion to evaluate whether invasive grasses have a direct effect on herbivore richness independent of the current disturbance level and host plant richness. By classifying herbivores according to the degree of host plant specialization, we also investigated whether invasive grasses reduce the uniqueness of the herbivorous assemblages. Herbivorous insect richness showed a unimodal relationship with invasive grass cover that was significantly explained only by way of the variation in host plant richness. The same result was found for polyphagous and oligophagous insects, but monophages showed a significant negative response to the intensity of the grass invasion that was independent of host plant richness. Our findings lend support to the hypothesis that the aggregate effect of invasive plants on herbivores tends to mirror the effects of invasive plants on host plants. In addition, exotic plants affect specialist insects differently from generalist insects; thus exotic plants affect not only the size but also the structural profile of herbivorous insect assemblages.
Resumo:
Esta dissertação trata da avaliação de impacto ambiental e das suas relações com o procedimento de licenciamento ambiental. Procura-se mostrar de que modo ambos manifestam-se metodológica e procedimentalmente no processo histórico e são permeados pela política. Em primeiro lugar, são expostos e discutidos os fatos que cercaram a inclusão da metodologia da avaliação de impacto ambiental no procedimento de licenciamento ambiental, no Brasil. Também a metodologia da avaliação de impacto ambiental e o atual procedimento de licenciamento ambiental brasileiro são detalhados e discutidos. Após isso, estuda-se o caso do licenciamento ambiental do Complexo Terrestre Cyclone 4, que leva à discussão acerca de como a legitimação de hierarquias que privilegiam o conhecimento científico e tecnológico em relação aos saberes locais tem sido combatida e subvertida ou, por outro lado, tem prevalecido, nos procedimentos de licenciamento ambiental e nas avaliações de impacto ambiental que ocorrem, presentemente, no Brasil
Resumo:
This paper presents a method for automatic identification of dust devils tracks in MOC NA and HiRISE images of Mars. The method is based on Mathematical Morphology and is able to successfully process those images despite their difference in spatial resolution or size of the scene. A dataset of 200 images from the surface of Mars representative of the diversity of those track features was considered for developing, testing and evaluating our method, confronting the outputs with reference images made manually. Analysis showed a mean accuracy of about 92%. We also give some examples on how to use the results to get information about dust devils, namelly mean width, main direction of movement and coverage per scene. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The fission-track method (FTM) in apatite was applied to 45 samples collected in the Serra da Mantiqueira (Mantiqueira mountain range), the Serra do Mar (Mar mountain range), regions next to these mountain ranges and the coastal region between Ubatuba and Santos in the State of São Paulo, Brazil, to study the thermochronology of the South American Platform in southeast Brazil and its influence on Santos and Campos basins. The data presented in this work complement the previously presented data on the same region (Tello Saenz et al., 2003. J. S. Am. Earth Sci. 15, 765-774) with 31 new samples analyzed. The weighted mean of the corrected ages from high Mantiqueira (around 1000 m), (121 +/- 6) Ma, coincides with the South Atlantic opening. The fact that its thermal history starts at a relatively low temperature (similar to 80 degrees C) suggests that the age of similar to 120 Ma would be the formation age of Serra da Mantiqueira due to a rapid pulse, in which tracks had no time to be retained at the closure temperature, that is similar to 120 degrees C. The Serra do Mar presents a more complicated thermal history, with several reactivations indicated by the changes in the slope of its cooling curve. The thermal histories obtained in the regions next to these mountain ranges are compatible with the results mentioned above. The Santos Basin has unconformities that agree with changes in the slope thermal histories of the studied region. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)