897 resultados para Cyber-Physical Systems


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spatial variability of conductivity in ceria is explored using scanning probe microscopy (SPM) with galvanostatic control. Ionically blocking electrodes are used to probe the conductivity under opposite polarities to reveal possible differences in the defect structure across a thin film of CeO2. Data suggests the existence of a large spatial inhomogeneity that could give rise to constant phase elements during standard electrochemical characterization, potentially affecting the overall conductivity of films on the macroscale. The approach discussed here can also be utilized for other mixed ionic electronic conductor (MIEC) systems including memristors and electroresistors, as well as physical systems such as ferroelectric tunneling barriers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cette thèse porte sur le rôle de l’espace dans l’organisation et dans la dynamique des communautés écologiques multi-espèces. Deux carences peuvent être identifiées dans les études théoriques actuelles portant sur la dimension spatiale des communautés écologiques : l’insuffisance de modèles multi-espèces représentant la dimension spatiale explicitement, et le manque d’attention portée aux interactions positives, tel le mutualisme, en dépit de la reconnaissance de leur ubiquité dans les systèmes écologiques. Cette thèse explore cette problématique propre à l’écologie des communautés, en utilisant une approche théorique s’inspirant de la théorie des systèmes complexes et de la mécanique statistique. Selon cette approche, les communautés d’espèces sont considérées comme des systèmes complexes dont les propriétés globales émergent des interactions locales entre les organismes qui les composent, et des interactions locales entre ces organismes et leur environnement. Le premier objectif de cette thèse est de développer un modèle de métacommunauté multi-espèces, explicitement spatial, orienté à l’échelle des individus et basé sur un réseau d’interactions interspécifiques générales comprenant à la fois des interactions d’exploitation, de compétition et de mutualisme. Dans ce modèle, les communautés locales sont formées par un processus d’assemblage des espèces à partir d’un réservoir régional. La croissance des populations est restreinte par une capacité limite et leur dynamique évolue suivant des mécanismes simples de reproduction et de dispersion des individus. Ces mécanismes sont dépendants des conditions biotiques et abiotiques des communautés locales et leur effet varie en fonction des espèces, du temps et de l’espace. Dans un deuxième temps, cette thèse a pour objectif de déterminer l’impact d’une connectivité spatiale croissante sur la dynamique spatiotemporelle et sur les propriétés structurelles et fonctionnelles de cette métacommunauté. Plus précisément, nous évaluons différentes propriétés des communautés en fonction du niveau de dispersion des espèces : i) la similarité dans la composition des communautés locales et ses patrons de corrélations spatiales; ii) la biodiversité locale et régionale, et la distribution locale de l’abondance des espèces; iii) la biomasse, la productivité et la stabilité dynamique aux échelles locale et régionale; et iv) la structure locale des interactions entre les espèces. Ces propriétés sont examinées selon deux schémas spatiaux. D’abord nous employons un environnement homogène et ensuite nous employons un environnement hétérogène où la capacité limite des communautés locales évoluent suivant un gradient. De façon générale, nos résultats révèlent que les communautés écologiques spatialement distribuées sont extrêmement sensibles aux modes et aux niveaux de dispersion des organismes. Leur dynamique spatiotemporelle et leurs propriétés structurelles et fonctionnelles peuvent subir des changements profonds sous forme de transitions significatives suivant une faible variation du niveau de dispersion. Ces changements apparaissent aussi par l’émergence de patrons spatiotemporels dans la distribution spatiale des populations qui sont typiques des transitions de phases observées généralement dans les systèmes physiques. La dynamique de la métacommunauté présente deux régimes. Dans le premier régime, correspondant aux niveaux faibles de dispersion des espèces, la dynamique d’assemblage favorise l’émergence de communautés stables, peu diverses et formées d’espèces abondantes et fortement mutualistes. La métacommunauté possède une forte diversité régionale puisque les communautés locales sont faiblement connectées et que leur composition demeure ainsi distincte. Par ailleurs dans le second régime, correspondant aux niveaux élevés de dispersion, la diversité régionale diminue au profit d’une augmentation de la diversité locale. Les communautés locales sont plus productives mais leur stabilité dynamique est réduite suite à la migration importante d’individus. Ce régime est aussi caractérisé par des assemblages incluant une plus grande diversité d’interactions interspécifiques. Ces résultats suggèrent qu’une augmentation du niveau de dispersion des organismes permet de coupler les communautés locales entre elles ce qui accroît la coexistence locale et favorise la formation de communautés écologiques plus riches et plus complexes. Finalement, notre étude suggère que le mutualisme est fondamentale à l’organisation et au maintient des communautés écologiques. Les espèces mutualistes dominent dans les habitats caractérisés par une capacité limite restreinte et servent d’ingénieurs écologiques en facilitant l’établissement de compétiteurs, prédateurs et opportunistes qui bénéficient de leur présence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis is a study of discrete nonlinear systems represented by one dimensional mappings.As one dimensional interative maps represent Poincarre sections of higher dimensional flows,they offer a convenient means to understand the dynamical evolution of many physical systems.It highlighting the basic ideas of deterministic chaos.Qualitative and quantitative measures for the detection and characterization of chaos in nonlinear systems are discussed.Some simple mathematical models exhibiting chaos are presented.The bifurcation scenario and the possible routes to chaos are explained.It present the results of the numerical computational of the Lyapunov exponents (λ) of one dimensional maps.This thesis focuses on the results obtained by our investigations on combinations maps,scaling behaviour of the Lyapunov characteristic exponents of one dimensional maps and the nature of bifurcations in a discontinous logistic map.It gives a review of the major routes to chaos in dissipative systems,namely, Period-doubling ,Intermittency and Crises.This study gives a theoretical understanding of the route to chaos in discontinous systems.A detailed analysis of the dynamics of a discontinous logistic map is carried out, both analytically and numerically ,to understand the route it follows to chaos.The present analysis deals only with the case of the discontinuity parameter applied to the right half of the interval of mapping.A detailed analysis for the n –furcations of various periodicities can be made and a more general theory for the map with discontinuities applied at different positions can be on a similar footing

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of simple chaotic maps for non-equilibrium processes in statistical physics has been one of the central themes in the theory of chaotic dynamical systems. Recently, many works have been carried out on deterministic diffusion in spatially extended one-dimensional maps This can be related to real physical systems such as Josephson junctions in the presence of microwave radiation and parametrically driven oscillators. Transport due to chaos is an important problem in Hamiltonian dynamics also. A recent approach is to evaluate the exact diffusion coefficient in terms of the periodic orbits of the system in the form of cycle expansions. But the fact is that the chaotic motion in such spatially extended maps has two complementary aspects- - diffusion and interrnittency. These are related to the time evolution of the probability density function which is approximately Gaussian by central limit theorem. It is noticed that the characteristic function method introduced by Fujisaka and his co-workers is a very powerful tool for analysing both these aspects of chaotic motion. The theory based on characteristic function actually provides a thermodynamic formalism for chaotic systems It can be applied to other types of chaos-induced diffusion also, such as the one arising in statistics of trajectory separation. It was noted that there is a close connection between cycle expansion technique and characteristic function method. It was found that this connection can be exploited to enhance the applicability of the cycle expansion technique. In this way, we found that cycle expansion can be used to analyse the probability density function in chaotic maps. In our research studies we have successfully applied the characteristic function method and cycle expansion technique for analysing some chaotic maps. We introduced in this connection, two classes of chaotic maps with variable shape by generalizing two types of maps well known in literature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, researchers in artificial intelligence have become interested in replicating human physical reasoning talents in computers. One of the most important skills in this area is predicting how physical systems will behave. This thesis discusses an implemented program that generates algebraic descriptions of how systems of rigid bodies evolve over time. Discussion about the design of this program identifies a physical reasoning paradigm and knowledge representation approach based on mathematical model construction and algebraic reasoning. This paradigm offers several advantages over methods that have become popular in the field, and seems promising for reasoning about a wide variety of classical mechanics problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La realidad de la complejidad en las organizaciones actuales " Kellert: Hay que ver la teoría del caos como una nueva y revolucionaria ciencia que es discontinua radicalmente con la tradición occidental de objetivar y controlar la naturaleza pues falsifica tanto el carácter de la teoría del caos y la historia de la ciencia. ... cualquier expectativa de que la teoría del caos es el re-encantamiento del mundo se reunirá con la decepción“ La complejidad a lo largo de la segunda mitad del siglo XX, fue adquiriendo importancia a partir de los trabajos desarrollados desde diferentes disciplinas, como respuesta a los vertiginosos avances y a la aparición de nuevas tecnologías que están cambiando nuestra forma de vida y generando nuevo conocimiento. Estamos acostumbrados a ver el mundo de manera lineal, conforme a nuestras formación racionalista, y el ser humano desligado de la naturaleza y su proceso evolutivo, en ese sentido desde la aparición de las TCP, encontramos nuevas formas de entender, tanto los sistemas físicos, biológicos como los sociales humanos. El objetivo de este escrito e hipótesis es plantear la contradicción que se presenta al interior de las organizaciones desde el punto de vista de la realidad organizacional, realizando una mirada rápida al desarrollo las teorías que hoy en día componen lo que entendemos como complejidad, para terminar en el planteamiento de cómo ella se presenta en el interior de las organizaciones. En donde la toma de decisiones por la magnitud de información existe, se vuelven complejas y terminamos en la búsqueda de modelos que nos permitan un manejo adecuado de las organizaciones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A direct method is presented for determining the uncertainty in reservoir pressure, flow, and net present value (NPV) using the time-dependent, one phase, two- or three-dimensional equations of flow through a porous medium. The uncertainty in the solution is modelled as a probability distribution function and is computed from given statistical data for input parameters such as permeability. The method generates an expansion for the mean of the pressure about a deterministic solution to the system equations using a perturbation to the mean of the input parameters. Hierarchical equations that define approximations to the mean solution at each point and to the field covariance of the pressure are developed and solved numerically. The procedure is then used to find the statistics of the flow and the risked value of the field, defined by the NPV, for a given development scenario. This method involves only one (albeit complicated) solution of the equations and contrasts with the more usual Monte-Carlo approach where many such solutions are required. The procedure is applied easily to other physical systems modelled by linear or nonlinear partial differential equations with uncertain data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many physical systems exhibit dynamics with vastly different time scales. Often the different motions interact only weakly and the slow dynamics is naturally constrained to a subspace of phase space, in the vicinity of a slow manifold. In geophysical fluid dynamics this reduction in phase space is called balance. Classically, balance is understood by way of the Rossby number R or the Froude number F; either R ≪ 1 or F ≪ 1. We examined the shallow-water equations and Boussinesq equations on an f -plane and determined a dimensionless parameter _, small values of which imply a time-scale separation. In terms of R and F, ∈= RF/√(R^2+R^2 ) We then developed a unified theory of (extratropical) balance based on _ that includes all cases of small R and/or small F. The leading-order systems are ensured to be Hamiltonian and turn out to be governed by the quasi-geostrophic potential-vorticity equation. However, the height field is not necessarily in geostrophic balance, so the leading-order dynamics are more general than in quasi-geostrophy. Thus the quasi-geostrophic potential-vorticity equation (as distinct from the quasi-geostrophic dynamics) is valid more generally than its traditional derivation would suggest. In the case of the Boussinesq equations, we have found that balanced dynamics generally implies hydrostatic balance without any assumption on the aspect ratio; only when the Froude number is not small and it is the Rossby number that guarantees a timescale separation must we impose the requirement of a small aspect ratio to ensure hydrostatic balance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hamiltonian dynamics describes the evolution of conservative physical systems. Originally developed as a generalization of Newtonian mechanics, describing gravitationally driven motion from the simple pendulum to celestial mechanics, it also applies to such diverse areas of physics as quantum mechanics, quantum field theory, statistical mechanics, electromagnetism, and optics – in short, to any physical system for which dissipation is negligible. Dynamical meteorology consists of the fundamental laws of physics, including Newton’s second law. For many purposes, diabatic and viscous processes can be neglected and the equations are then conservative. (For example, in idealized modeling studies, dissipation is often only present for numerical reasons and is kept as small as possible.) In such cases dynamical meteorology obeys Hamiltonian dynamics. Even when nonconservative processes are not negligible, it often turns out that separate analysis of the conservative dynamics, which fully describes the nonlinear interactions, is essential for an understanding of the complete system, and the Hamiltonian description can play a useful role in this respect. Energy budgets and momentum transfer by waves are but two examples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Computational formalisms have been pushing the boundaries of the field of computing for the last 80 years and much debate has surrounded what computing entails; what it is, and what it is not. This paper seeks to explore the boundaries of the ideas of computation and provide a framework for enabling a constructive discussion of computational ideas. First, a review of computing is given, ranging from Turing Machines to interactive computing. Then, a variety of natural physical systems are considered for their computational qualities. From this exploration, a framework is presented under which all dynamical systems can be considered as instances of the class of abstract computational platforms. An abstract computational platform is defined by both its intrinsic dynamics and how it allows computation that is meaningful to an external agent through the configuration of constraints upon those dynamics. It is asserted that a platform’s computational expressiveness is directly related to the freedom with which constraints can be placed. Finally, the requirements for a formal constraint description language are considered and it is proposed that Abstract State Machines may provide a reasonable basis for such a language.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Física e a Administração concentram suas pesquisas sobre fenômenos que, de certa forma, se assemelham, fazendo com que nos questionemos a respeito da grande integral do universo a que estamos submetidos. Em uma exploração por analogias, aproxima-se aqui o mundo organizacional ao dos sistemas UnIVerSaIS, instáveis e não-integráveis, onde a flecha do tempo é quem determina a evolução dos mesmos. Mostra-se que na Administração, como na Física, tudo parece convergir na direção de um inesgotável repertório de bifurcações e possibilidades para o destino mercadológico de produtos, serviços e marcas ao longo de um continuum. Para amenizar os efeitos dessas incertezas, é buscada uma simplificação desses complexos sistemas sociais através de uma proposta de modelo baseado em fatores consagrados pela literatura da gestão empresarial como norteadores das escolhas dos consumidores; um processo gaussiano da 'percepção do valor', que pode servir de ferramenta nas decisões estratégicas e gerenciais dentro das empresas.