981 resultados para Cyanobacterial blooms -- Growth
Resumo:
The bioavailability of iron, in combination with essential macronutrients such as phosphorus, has been hypothesised to be linked to nuisance blooms of the toxic cyanobacterium Lyngbya majuscula. The present laboratory study used two biological assay techniques to test whether various concentrations of added iron (inorganic and organically chelated) enhanced L. majuscula filament growth and productivity (C-14-bicarbonate uptake rate). Organically chelated iron (FeEDTA) with adequate background concentrations of phosphorus and molybdenum caused the largest increases (up to 4.5 times the control) in L. majuscula productivity and filament growth. The addition of inorganic iron (without added phosphorus or molybdenum) also stimulated L. majuscula filament growth. However, overall the FeEDTA was substantially and significantly more effective in promoting L. majuscula growth than inorganic iron (FeCl3). The organic chelator (EDTA) alone and molybdenum alone also enhanced L. majuscula growth but to a lesser extent than the chelated iron. The results of the present laboratory study support the hypothesis that iron and chelating organic compounds may be important in promoting blooms of L. majuscula in coastal waters of Queensland, Australia.
Resumo:
The clear, shallow, oligotrophic waters of Florida Bay are characterized by low phytoplankton biomass, yet periodic cyanobacteria and diatom blooms do occur. We hypothesized that allochthonous dissolved organic matter (DOM) was providing a subsidy to the system in the form of bound nutrients. Water from four bay sites was incubated under natural light and dark conditions with enrichments of either DOM ( > 1 kD, 2×DOM) or inorganic nutrients (N+P). Samples were analyzed for bacterial numbers, bacterial production, phytoplankton biomass, phytoplankton community structure, and production, nutrients, and alkaline phosphatase (AP) activity. The influence of 2×DOM enrichment on phytoplankton biomass developed slowly during the incubations and was relatively small compared to nutrient additions. Inorganic nutrient additions resulted in an ephemeral bloom characterized initially as cyanobacterial and brown algae but which changed to dinoflagellate and/or brown algae by day six. The DIN:TP ratio decreased 10-fold in the N+P treatments as the system progressed towards N limitation. This ratio did not change significantly for 2×DOM treatments. In addition, these experiments indicated that both autotrophic and heterotrophic microbial populations in Florida Bay may fluctuate in their limitation by organic and inorganic nutrient availability. Both N+P and 2×DOM enrichments revealed significant and positive response in bioavailability of dissolved organic carbon (BDOC). Potential BDOC ranged from 1.1 to 35.5%, with the most labile forms occurring in Whipray Basin. BDOC at all sites was stimulated by the 2×DOM addition. Except for Duck Key, BDOC at all sites was also stimulated by the addition of N+P. BDOC was lower in the dry season than in the wet season (5.56% vs. 16.86%). This may be explained by the distinct chemical characteristics of the DOM produced at different times of year. Thus, both the heterotrophic and autotrophic microbial communities in Florida Bay are modulated by bioavailability of DOM. This has ramifications for the fate of DOM from the Everglades inputs, implicating DOM bioavailability as a contributing factor in regulating the onset, persistence, and composition of phytoplankton blooms.
Resumo:
Coastal marine ecosystems are among the most impacted globally, attributable to individual and cumulative effects of human disturbance. Anthropogenic nutrient loading is one stressor that commonly affects nearshore ecosystems, including seagrass beds, and has positive and negative effects on the structure and function of coastal systems. An additional, previously unexplored mechanistic pathway through which nutrients may indirectly influence nearshore systems is by driving blooms of benthic jellyfish. My dissertation research, conducted on Abaco Island, Bahamas, focused on elucidating the role that benthic jellyfish have in structuring systems in which they are common (i.e., seagrass beds), and explored mechanistic processes that may drive blooms of this taxa. ^ To establish that human disturbances (e.g., elevated nutrient availability) may drive increased abundance and size of benthic jellyfish, Cassiopea spp., I conducted surveys in human-impacted and unimpacted coastal sites. Jellyfish were more abundant (and larger) from human-impacted areas, positively correlated to elevated nutrient availability. In order to elucidate mechanisms linking Cassiopea spp. with elevated nutrients, I evaluated whether zooxanthellae from Cassiopea were higher from human-disturbed systems, and whether Cassiopea exhibited increased size following nutrient input. I demonstrated that zooxanthellae population densities were elevated in human-impacted sites, and that nutrients led to positive jellyfish growth. ^ As heightened densities of Cassiopea jellyfish may exert top-down and bottom-up controls on flora and fauna in impacted seagrass beds, I sought to examine ecological responses to Cassiopea. I evaluated whether there was a relationship between high Cassiopea densities and lower benthic fauna abundance and diversity in shallow seagrass beds. I found that Cassiopea have subtle effects on benthic fauna. However, through an experiment conducted in a seagrass bed in which nutrients and Cassiopea were added, I demonstrated that Cassiopea can result in seagrass habitat modification, with negative consequences for benthic fauna. ^ My dissertation research demonstrates that increased human-driven benthic jellyfish densities may have indirect and direct effects on flora and fauna of coastal marine systems. This knowledge will advance our understanding of how human disturbances shift species interactions in coastal ecosystems, and will be critical for effective management of jellyfish blooms.^
Resumo:
Coastal marine ecosystems are among the most impacted globally, attributable to individual and cumulative effects of human disturbance. Anthropogenic nutrient loading is one stressor that commonly affects nearshore ecosystems, including seagrass beds, and has positive and negative effects on the structure and function of coastal systems. An additional, previously unexplored mechanistic pathway through which nutrients may indirectly influence nearshore systems is by driving blooms of benthic jellyfish. My dissertation research, conducted on Abaco Island, Bahamas, focused on elucidating the role that benthic jellyfish have in structuring systems in which they are common (i.e., seagrass beds), and explored mechanistic processes that may drive blooms of this taxa. To establish that human disturbances (e.g., elevated nutrient availability) may drive increased abundance and size of benthic jellyfish, Cassiopea spp., I conducted surveys in human-impacted and unimpacted coastal sites. Jellyfish were more abundant (and larger) from human-impacted areas, positively correlated to elevated nutrient availability. In order to elucidate mechanisms linking Cassiopea spp. with elevated nutrients, I evaluated whether zooxanthellae from Cassiopea were higher from human-disturbed systems, and whether Cassiopea exhibited increased size following nutrient input. I demonstrated that zooxanthellae population densities were elevated in human-impacted sites, and that nutrients led to positive jellyfish growth. As heightened densities of Cassiopea jellyfish may exert top-down and bottom-up controls on flora and fauna in impacted seagrass beds, I sought to examine ecological responses to Cassiopea. I evaluated whether there was a relationship between high Cassiopea densities and lower benthic fauna abundance and diversity in shallow seagrass beds. I found that Cassiopea have subtle effects on benthic fauna. However, through an experiment conducted in a seagrass bed in which nutrients and Cassiopea were added, I demonstrated that Cassiopea can result in seagrass habitat modification, with negative consequences for benthic fauna. My dissertation research demonstrates that increased human-driven benthic jellyfish densities may have indirect and direct effects on flora and fauna of coastal marine systems. This knowledge will advance our understanding of how human disturbances shift species interactions in coastal ecosystems, and will be critical for effective management of jellyfish blooms.
Resumo:
Total organic carbon, total inorganic carbon, biogenic silica content and total organic carbon/total nitrogen ratios of the Laguna Potrok Aike lacustrine sediment record are used to reconstruct the environmental history of south-east Patagonia during the past 51 ka in high resolution. High lake level conditions are assumed to have prevailed during the Last Glacial, as sediments are carbonate-free. Increased runoff linked to permafrost and reduced evaporation due to colder temperatures and reduced influence of Southern Hemispheric Westerlies (SHW) may have caused these high lake levels with lake productivity being low and organic matter mainly of algal or cyanobacterial origin. Aquatic moss growth and diatom blooms occurred synchronously with southern hemispheric glacial warming events such as the Antarctic A-events, the postglacial warming following the LGM and the Younger Dryas chronozone. During these times, a combination of warmer climatic conditions with related thawing permafrost could have increased the allochthonous input of nutrients and in combination with warmer surface waters increased aquatic moss growth and diatom production. The SHW were not observed to affect southern Patagonia during the Last Glacial. The Holocene presents a completely different lacustrine system because (a) permafrost no longer inhibits infiltration nor emits meltwater pulses and (b) the positioning of the SHW over the investigated area gives rise to strong and dry winds. Under these conditions total organic carbon, total organic carbon/total nitrogen ratios and biogenic silica cease to be first order productivity indicators. On the one hand, the biogenic silica is influenced by dissolution of diatoms due to higher salinity and pH of the lake water under evaporative stress characterizing low lake levels. On the other hand, total organic carbon and total organic carbon/total nitrogen profiles are influenced by reworked macrophytes from freshly exposed lake level terraces during lowstands. Total inorganic carbon remains the most reliable proxy for climatic variations during the Holocene as high precipitation of carbonates can be linked to low lake levels and high autochthonous production. The onset of inorganic carbon precipitation has been associated with the southward shift of the SHW over the latitudes of Laguna Potrok Aike. The refined age-depth model of this record suggests that this shift occurred around 9.4 cal. ka BP.
Resumo:
The filamentous and diazotrophic cyanobacterium Nodularia spumigena plays a major role in the productivity of the Baltic Sea as it forms extensive blooms regularly. Under phosphorus limiting conditions Nodularia spumigena has a high enzyme affinity for dissolved organic phosphorus (DOP) by production and release of alkaline phosphatase. Additionally, it is able to degrade proteinaceous compounds by expressing the extracellular enzyme leucine aminopeptidase. As atmospheric CO2 concentrations are increasing, we expect marine phytoplankton to experience changes in several environmental parameters including pH, temperature, and nutrient availability. The aim of this study was to investigate the combined effect of CO2-induced changes in seawater carbonate chemistry and of phosphate deficiency on the exudation of organic matter, and its subsequent recycling by extracellular enzymes in a Nodularia spumigena culture. Batch cultures of Nodularia spumigena were grown for 15 days aerated with three different pCO2 levels corresponding to values from glacial periods to future values projected for the year 2100. Extracellular enzyme activities as well as changes in organic and inorganic compound concentrations were monitored. CO2 treatment-related effects were identified for cyanobacterial growth, which in turn was influencing exudation and recycling of organic matter by extracellular enzymes. Biomass production was increased by 56.5% and 90.7% in the medium and high pCO2 treatment, respectively, compared to the low pCO2 treatment and simultaneously increasing exudation. During the growth phase significantly more mucinous substances accumulated in the high pCO2 treatment reaching 363 µg Gum Xanthan eq /l compared to 269 µg Gum Xanthan eq /l in the low pCO2 treatment. However, cell-specific rates did not change. After phosphate depletion, the acquisition of P from DOP by alkaline phosphatase was significantly enhanced. Alkaline phosphatase activities were increased by factor 1.64 and 2.25, respectively, in the medium and high compared to the low pCO2 treatment. In conclusion, our results suggest that Nodularia spumigena can grow faster under elevated pCO2 by enhancing the recycling of organic matter to acquire nutrients.
Resumo:
Vulcanodinium rugosum, a recently described species, produces pinnatoxins. The IFR-VRU-01 strain, isolated from a French Mediterranean lagoon in 2010 and identified as the causative dinoflagellate contaminating mussels in the Ingril Lagoon (French Mediterranean) with pinnatoxin-G, was grown in an enriched natural seawater medium. We tested the effect of temperature and salinity on growth, pinnatoxin-G production and chlorophyll a levels of this dinoflagellate. These factors were tested in combinations of five temperatures (15, 20, 25, 30 and 35 °C) and five salinities (20, 25, 30, 35 and 40) at an irradiance of 100 µmol photon m−2 s−1. V. rugosum can grow at temperatures and salinities ranging from 20 °C to 30 °C and 20 to 40, respectively. The optimal combination for growth (0.39 ± 0.11 d−1) was a temperature of 25 °C and a salinity of 40. Results suggest that V. rugosum is euryhaline and thermophile which could explain why this dinoflagellate develops in situ only from June to September. V. rugosum growth rate and pinnatoxin-G production were highest at temperatures ranging between 25 and 30 °C. This suggests that the dinoflagellate may give rise to extensive blooms in the coming decades caused by the climate change-related increases in temperature expected in the Mediterranean coasts.
Resumo:
In May, June and July 1996, samples wcre collected along one transect greatly influenced by river discharge (eastern side of the gulf), along one transect slightly influence by river discharge (western side), at one station Iocated in the mouth of the main river (River Daugava), at one station located in the center of the Gulf and at several nearshore locations of the western side. Ratios of rnolecular concentrations of in situ dissolved ioorganic nitrogen, phosphorus and silicon, as weIl as enrichment bioassays were llsed to dctcrrnine which nutrient (s) lirnited the potential biomass of phytoplankton. Both comparison of (NO.d-N02+NJ.L): P04 (DIN: DIP) values with Redfic1d's ratio and bioassay inspection led to the sarne conclusions. Phosphorus was clearly the nutrient most limiting for the potcntial biornass of test species in nitrogen- rich waters, which occurred in mid spring, in the upper layer of the southern-eastern part of the Gulf which is greatly influenced by river discharge. In late spring, with the decrease of the total DIN reserve, nitrogen and phosphorus showed an equallimiting role. In deeper layers of this area and out of the river plume (western side and central part of the gulf), nitrogen was the limiting nutrient. In summer, whcn river discharge was the lowest, a11 DIN concentrations but one ranged between 1.6 and 2.6 µM, and the whole area was nitrogen-limited for both the cyanobacterial and the algal test strains. In 74% of the samples for which nitrogen was the limiting nutrient, phosphorus was recorded to be the second potentially limiting nutrient. In contrast, silicon never appeared as limiting the growth potential of either Microcystis aeruginosa or Phaeodactylum tricornutum; phosphorus was the limiting nutrient when DIN: Si03 values were >1 (in May), but DIN: Si03 was <1 when nitrogen was limiting (June and July). The authors conclude that the recently reported decrease of silicon loading in coastal waters and its subsequent enhanced importance in pushing the outcome of species competition towards harmful species may not yet be the most important factor for the Gulf of Riga. Iron appeared for 12% of the tests in the list of nutrients limiting the potential biomass. Tentative results also indicated that a significant fraction of the nitrogen (~,4 µg-atom N 1(-1) taken up by Microcystis aeruginosa may have been in the form of dissolved organic nitrogen (DON). It is thus also suggested tentatively that more attention be paid to these nitrients during further research in the Gulf of Riga.
Inter-Organisational Approaches to Regional Growth Management: A Case Study in South East Queensland
Resumo:
It is known that boehmite (AlOOH) nanofibers formed in the presence of nonionic poly(ethylene oxide) (PEO) surfactant at 373 K. A novel approach is proposed in this study for the growth of the boehmite nanofibers: when fresh aluminum hydrate precipitate was added at regular interval to initial mixture of boehmite and PEO surfactant at 373 K, the nanofibers grow from 40 to 50 nm long to over 100 nm. It is believed that the surfactant micelles play an important role in the nanofiber growth: directing the assembly of aluminum hydrate particles through hydrogen bonding with the hydroxyls on the surface of aluminum hydrate particles. Meanwhile a gradual improvement in the crystallinity of the fibers during growth is observed and attributed to the Ostwald ripening process. This approach allows us to precisely control the size and morphology of boehmite nanofibers using soft chemical methods and could be useful for low temperature, aqueous syntheses of other oxide nanomaterials with tailorable structural specificity such as size, dimension and morphology.