985 resultados para Crystal size


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocrystalline titania are a robust candidate for various functional applications owing to its non-toxicity, cheap availability, ease of preparation and exceptional photochemical as well as thermal stability. The uniqueness in each lattice structure of titania leads to multifaceted physico-chemical and opto-electronic properties, which yield different functionalities and thus influence their performances in various green energy applications. The high temperature treatment for crystallizing titania triggers inevitable particle growth and the destruction of delicate nanostructural features. Thus, the preparation of crystalline titania with tunable phase/particle size/morphology at low to moderate temperatures using a solution-based approach has paved the way for further exciting areas of research. In this focused review, titania synthesis from hydrothermal/solvothermal method, conventional sol-gel method and sol-gel-assisted method via ultrasonication, photoillumination and ILs, thermolysis and microemulsion routes are discussed. These wet chemical methods have broader visibility, since multiple reaction parameters, such as precursor chemistry, surfactants, chelating agents, solvents, mineralizer, pH of the solution, aging time, reaction temperature/time, inorganic electrolytes, can be easily manipulated to tune the final physical structure. This review sheds light on the stabilization/phase transformation pathways of titania polymorphs like anatase, rutile, brookite and TiO2(B) under a variety of reaction conditions. The driving force for crystallization arising from complex species in solution coupled with pH of the solution and ion species facilitating the orientation of octahedral resulting in a crystalline phase are reviewed in detail. In addition to titanium halide/alkoxide, the nucleation of titania from other precursors like peroxo and layered titanates are also discussed. The nonaqueous route and ball milling-induced titania transformation is briefly outlined; moreover, the lacunae in understanding the concepts and future prospects in this exciting field are suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

3,4-Dichlorophenol (1) crystallizes in the tetragonal space group I4(1)/a with a short axis of 3.7926 (9) angstrom. The structure is unique in that both type I and type II Cl.....Cl interactions are present, these contact types being distinguished by the angle ranges of the respective C-Cl....Cl angles. The present study shows that these two types of contacts are utterly different. The crystal structures of 4-bromo-3-chlorophenol (2) and 3-bromo-4-chlorophenol (3) have been determined. The crystal structure of (2) is isomorphous to that of (1) with the Br atom in the 4-position participating in a type II interaction. However, the monoclinic P2(1)/c packing of compound (3) is different; while the structure still has O-H....O hydrogen bonds, the tetramer O-H.....O synthon seen in (1) and (2) is not seen. Rather than a type I Br....Br interaction which would have been mandated if (3) were isomorphous to (1) and (2), Br forms a Br....O contact wherein its electrophilic character is clearly evident. Crystal structures of the related compounds 4-chloro-3-iodophenol (4) and 3,5-dibromophenol (5) were also determined. A computational survey of the structural landscape was undertaken for (1), (2) and (3), using a crystal structure prediction protocol in space groups P2(1)/c and I4(1)/a with the COMPASS26 force field. While both tetragonal and monoclinic structures are energetically reasonable for all compounds, the fact that (3) takes the latter structure indicates that Br prefers type II over type I contacts. In order to differentiate further between type I and type II halogen contacts, which being chemically distinct are expected to have different distance fall-off properties, a variable-temperature crystallography study was performed on compounds (1), (2) and (4). Length variations with temperature are greater for type II contacts compared with type I. The type II Br....Br interaction in (2) is stronger than the corresponding type II Cl....Cl interaction in (1), leading to elastic bending of the former upon application of mechanical stress, which contrasts with the plastic deformation of (1). The observation of elastic deformation in (2) is noteworthy; in that it finds an explanation based on the strengths of the respective halogen bonds, it could also be taken as a good starting model for future property design. Cl/Br isostructurality is studied with the Cambridge Structural Database and it is indicated that this isostructurality is based on shape and size similarity of Cl and Br, rather than arising from any chemical resemblance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pt-modified beta-NiAl bond coats are applied over the superalloys for oxidation protection in jet engine applications. However, as shown in this study, it also enhances the growth of the interdiffusion zone developed between the bond coat and the superalloy along with brittle precipitates. Location of the Kirkendall plane indicates that a precipitate free sublayer grows from the bond coat, whereas another sublayer grows from the superalloy containing very high volume fraction of precipitates. With increasing Pt content, thickness of both the sublayers increases because of an increase in diffusion rates of the components. Quantitative electron probe microanalysis indicates high concentration of refractory components in the precipitates. Transmission electron microscopy shows that Rene N5 superalloy produces TCP phases mu and P, whereas CMSX-4 superalloy produces mu and sigma in the interdiffusion zone. With increasing Pt content in the bond coat, the average size of the precipitates decreases when coupled with Rene N5. Precipitates become much finer when the same bond coats are coupled with CMSX-4. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pt-modified beta-NiAl bond coats are applied over the superalloys for oxidation protection in jet engine applications. However, as shown in this study, it also enhances the growth of the interdiffusion zone developed between the bond coat and the superalloy along with brittle precipitates. Location of the Kirkendall plane indicates that a precipitate free sublayer grows from the bond coat, whereas another sublayer grows from the superalloy containing very high volume fraction of precipitates. With increasing Pt content, thickness of both the sublayers increases because of an increase in diffusion rates of the components. Quantitative electron probe microanalysis indicates high concentration of refractory components in the precipitates. Transmission electron microscopy shows that Rene N5 superalloy produces TCP phases mu and P, whereas CMSX-4 superalloy produces mu and sigma in the interdiffusion zone. With increasing Pt content in the bond coat, the average size of the precipitates decreases when coupled with Rene N5. Precipitates become much finer when the same bond coats are coupled with CMSX-4. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The property of crystal depends seriously on the solution concentration distribution near the growth surface of a crystal. However, the concentration distributions are affected by the diffusion and convection of the solution. In the present experiment, the two methods of optical measurement are used to obtained velocity field and concentration field of NaClO3 solution. The convection patterns in sodium chlorate (NaClO3) crystal growth are measured by Digital Particle image Velocimetry (DPIV) technology. The 2-dimentional velocity distributions in the solution of NaClO3 are obtained from experiments. And concentration field are obtained by a Mach-Zehnder interferometer with a phase shift servo system. Interference patterns were recorded directly by a computer via a CCD camera. The evolution of velocity field and concentration field from dissolution to crystallization are visualized clearly. The structures of velocity fields were compared with that of concentration field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micro-indentation test at scales on the order of sub-micron has shown that the measured hardness increases strongly with decreasing indent depth or indent size, which is frequently referred to as the size effect. Simultaneously, at micron or sub-micron scale, the material microstructure size also has an important influence on the measured hardness. This kind of effect, such as the crystal grain size effect, thin film thickness effect, etc., is called the geometrical effect by here. In the present research, in order to investigate the size effect and the geometrical effect, the micro-indentation experiments are carried out respectively for single crystal copper and aluminum, for polycrystal aluminum, as well as for a thin film/substrate system, Ti/Si3N4. The size effect and geometrical effect are displayed experimentally. Moreover, using strain gradient plasticity theory, the size effect and the geometrical effect are simulated. Through comparing experimental results with simulation results, length-scale parameter appearing in the strain gradient theory for different cases is predicted. Furthermore, the size effect and the geometrical effect are interpreted using the geometrically necessary dislocation concept and the discrete dislocation theory. Member Price: $0; Non-Member Price: $25.00

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We recently proposed a strain gradient theory to account for the size dependence of plastic deformation at micron and submicron length scales. The strain gradient theory includes the effects of both rotation gradient and stretch gradient such that the rotation gradient influences the material character through the interaction between the Cauchy stresses and the couple stresses; the stretch gradient measures explicitly enter the constitutive relations through the instantaneous tangent modulus. Indentation tests at scales on the order of one micron have shown that measured hardness increases significantly with decreasing indent size. In the present paper, the strain gradient theory is used to model materials undergoing small-scale indentations. A strong effect of including strain gradients in the constitutive description is found with hardness increasing by a factor of two or more over the relevant range behavior. Comparisons with the experimental data for polycrystalline copper and single crystal copper indeed show an approximately linear dependence of the square of the hardness, H 2, on the inverse of the indentation depth, 1/h, I.e., H-2 proportional to 1/h, which provides an important self-consistent check of the strain gradient theory proposed by the authors earlier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Size-dependent elastic constants are investigated theoretically with reference to a nanoscale single-crystal thin film. A three-dimensional _3D_ model is presented with the relaxation on the surface of the nanofilm taken into consideration. The constitutive relation of the 3D model is derived by using the energy approach, and analytical expressions for the four nonzero elastic constants of the nanofilm are obtained. The size effects of the four elastic constants are then discussed, and the dependence of these elastic constants on the surface relaxation and the ambiguity in the definition of the thickness of the nanofilm are also analyzed. In addition, the elastic moduli of the nanofilm in two kinds of plane problem are obtained and discussed in the case of a special boundary condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micro-indentation tests at scales of the order of sub-micron show that the measured hardness increases strongly with decreasing indent depth or indent size, which is frequently referred to as the size effect. At the same time, at micron or sub-micron scale, another effect, which is referred to as the geometrical size effects such as crystal grain size effect, thin film thickness effect, etc., also influences the measured material hardness. However, the trends are at odds with the size-independence implied by the conventional elastic-plastic theory. In the present research, the strain gradient plasticity theory (Fleck and Hutchinson) is used to model the composition effects (size effect and geometrical effect) for polycrystal material and metal thin film/ceramic substrate systems when materials undergo micro-indenting. The phenomena of the "pile-up" and "sink-in" appeared in the indentation test for the polycrystal materials are also discussed. Meanwhile, the micro-indentation experiments for the polycrystal Al and for the Ti/Si_3N_4 thin film/substrate system are carried out. By comparing the theoretical predictions with experimental measurements, the values and the variation trends of the micro-scale parameter included in the strain gradient plasticity theory are predicted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effective elastic modulus and fracture toughness of the nanofilm were derived with the surface relaxation and the surface energy taken into consideration by means of the interatomic potential of an ideal crystal. The size effects of the effective elastic modulus and fracture toughness were discussed when the thickness of the nanofilm was reduced. And the dependence of the size effects on the surface relaxation and surface energy was also analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theoretical model is presented to investigate the size-dependent bending elastic properties of a nanobeam with the influence of the surface relaxation and the surface tension taken into consideration. The surface layer and its thickness of a nanostructure are defined unambiguously. A three-dimensional (3D) crystal model for a nanofilm with n layers of relaxed atoms is investigated. The four nonzero elastic constants of the nanofilm are derived, and then the Young's modulus for simple tension is obtained. Using the relation of energy equilibrium, the size-dependent effective elastic modulus and effective flexural rigidity of a nanobeam with two kinds of cross sections are derived, and their dependence on the surface relaxation and the surface tension is analysed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large size bulk silicon carbide (SiC) crystals are commonly grown by the physical vapor transport (PVT) method. The PVT growth of SiC crystals involves sublimation and condensation, chemical reactions, stoichiometry, mass transport, induced thermal stress, as well as defect and micropipes generation and propagation. The quality and polytype of as-grown SiC crystals are related to the temperature distribution inside the growth chamber during the growth process, it is critical to predict the temperature distribution from the measured temperatures outside the crucible by pyrometers. A radio-frequency induction-heating furnace was used for the growth of large-size SiC crystals by the PVT method in the present study. Modeling and simulation have been used to develop the SiC growth process and to improve the SiC crystal quality. Parameters such as the temperature measured at the top of crucible, temperature measured at the bottom of the crucible, and inert gas pressure are used to control the SiC growth process. By measuring the temperatures at the top and bottom of the crucible, the temperatures inside the crucible were predicted with the help of modeling tool. SiC crystals of 6H polytype were obtained and characterized by the Raman scattering spectroscopy and SEM, and crystals of few millimeter size grown inside the crucible were found without micropipes. Expansion of the crystals were also performed with the help of modeling and simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall goal of this study was to develop a new fishery resource product through open-water aquaculture for the west coast of Florida that would compete as a non-traditional product through market development. Specific objectives were as follows: I. To grow a minimum of 50, 000 juvenile scallops to a minimum market size of40 mm in a cage and float system in the off-shore waters of Crystal River, Florida. 2. To determine the growth rate, survival, and time to market size for the individuals in this system and area to other similar projects like Virginia. 3. To introduce local fishermen and the aquaculture students at Crystal River High School to the hatchery, nursery, and grow-out techniques. 4. To determine the economic and financial characteristics of bay scallop culture in Florida and assess the sensitivity of projected costs and earnings to changes in key technical, managerial, and market related parameters. 5. To determine the market acceptability and necessary marketing strategy for whole bay scallop product in Florida. (PDF has 99 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall goal of this study was to develop a new fishery resource product through open-water aquaculture for the west coast of Florida that would compete as a non-traditional product through market development. Specific objectives were as follows: I. To grow a minimum of 50, 000 juvenile scallops to a minimum market size of40 mm in a cage and float system in the off-shore waters of Crystal River, Florida. 2. To determine the growth rate, survival, and time to market size for the individuals in this system and area to other similar projects like Virginia. 3. To introduce local fishermen and the aquaculture students at Crystal River High School to the hatchery, nursery, and grow-out techniques. 4. To determine the economic and financial characteristics of bay scallop culture in Florida and assess the sensitivity of projected costs and earnings to changes in key technical, managerial, and market related parameters. 5. To determine the market acceptability and necessary marketing strategy for whole bay scallop product in Florida. (PDF has 99 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal expansion coefficient (TEC) of an ideal crystal is derived by using a method of Boltzmann statistics. The Morse potential energy function is adopted to show the dependence of the TEC on the temperature. By taking the effects of the surface relaxation and the surface energy into consideration, the dimensionless TEC of a nanofilm is derived. It is shown that with decreasing thickness, the TEC can increase or decrease, depending on the surface relaxation of the nanofilm.