886 resultados para Crystal defect
Resumo:
J Biol Inorg Chem (2011) 16:51–61 DOI 10.1007/s00775-010-0700-8
Resumo:
J Biol Inorg Chem (2006) 11: 548–558 DOI 10.1007/s00775-006-0104-y
Resumo:
J. Am. Chem. Soc., 2004, 126 (28), pp 8614–8615 DOI: 10.1021/ja0490222
Resumo:
Dissertação para obtenção do Grau de Doutor em Ambiente
Resumo:
Probing micro-/nano-sized surface conformations, which are ubiquitous in biological systems, by using liquid crystal droplets, which change their ordering and optical appearance in response to the presence of more than ten times smaller cellulose based micro/nano fibers, might find new uses in a range of biological environments and sensors. Previous studies indicate that electrospun micro/nano cellulosic fibers produced from liquid crystalline solutions could present a twisted form [1]. In this work, we study the structures of nematic liquid crystal droplets threaded by cellulose fibers prepared from liquid crystalline and isotropic solutions as well as droplets pierced by spider-made fibers [2]. Planar anchoring at the fibers and planar and homeotropic at the drop surfaces allowed probing cellulose fibers different helical structures as well as aligned filaments.
Resumo:
The work described in this thesis was performed at the Laboratory for Intense Lasers (L2I) of Instituto Superior Técnico, University of Lisbon (IST-UL). Its main contribution consists in the feasibility study of the broadband dispersive stages for an optical parametric chirped pulse amplifier based on the nonlinear crystal yttrium calcium oxi-borate (YCOB). In particular, the main goal of this work consisted in the characterization and implementation of the several optical devices involved in pulse expansion and compression of the amplified pulses to durations of the order of a few optical cycles (20 fs). This type of laser systems find application in fields such as medicine, telecommunications and machining, which require high energy, ultrashort (sub-100 fs) pulses. The main challenges consisted in the preliminary study of the performance of the broadband amplifier, which is essential for successfully handling pulses with bandwidths exceeding 100 nm when amplified from the μJ to 20 mJ per pulse. In general, the control, manipulation and characterization of optical phenomena on the scale of a few tens of fs and powers that can reach the PW level are extremely difficult and challenging due to the complexity of the phenomena of radiation-matter interaction and their nonlinearities, observed at this time scale and power level. For this purpose the main dispersive components were characterized in detail, specifically addressing the demonstration of pulse expansion and compression. The tested bandwidths are narrower than the final ones, in order to confirm the parameters of these elements and predict the performance for the broadband pulses. The work performed led to additional tasks such as a detailed characterization of laser oscillator seeding the laser chain and the detection and cancelling of additional sources of dispersion.
Resumo:
RESUMO: Mutações em genes envolvidos na formação do coração e anomalias em qualquer etapa deste processo causam frequentemente malformações cardíacas, que representam o tipo mais comum de defeitos em neonatais, afetando cerca de 1% dos nascimentos por ano. Assim, estima-se que 20 milhões de pessoas sejam portadoras de um defeito cardíaco congénito. O coração da Drosophila melanogaster (mosca-da-fruta), denominado vaso dorsal, é um órgão relativamente simples que actua como uma bomba muscular, contraindo automaticamente para permitir a circulação da hemolinfa através do corpo. A formação do vaso dorsal na mosca é muito semelhante ao desenvolvimento do coração em vertebrados, representando por isso, um poderoso modelo para estudar a rede de genes e os padrões regulatórios relacionados com o desenvolvimento deste órgão. Anteriormente, nós identificámos um gene em Drosophila, darhgef10, fortemente expresso no coração em desenvolvimento e cuja deleção induz anormalidades cardíacas subtis mas prevalentes. Os mutantes para darhgef10 são viáveis e férteis no ambiente controlado de laboratório. Este trabalho teve como objectivos caracterizar fenotipicamente os mutantes nulos para darhgef10, determinar a localização subcelular da proteína dArhgef10 e investigar a base celular subjacente ao defeito no alinhamento dos cardioblastos observado nos mutantes. Os nossos resultados revelaram que a deleção de darhgef10 provoca uma severa redução da viabilidade, sem no entanto comprometer o tempo de desenvolvimento e a longevidade. Por outro lado, o aumento da expressão de darhgef10 em músculos, glândulas salivares e no disco imaginal do olho afeta drasticamente a integridade destes tecidos. A expressão ectópica de darhgef10 in vitro e in vivo revelou que a proteína está localiza no citoplasma com enriquecimento junto à membrana celular, com associação à actina F. Live imaging de embriões mutantes para darhgef10 revelou que os defeitos observados no coração podem estar associados a um defeito na adesão dos músculos alary e/ou das células pericardiais ao vaso dorsal. O homólogo humano de darhgef10, ARHGEF10, também é expresso no coração e está associação a uma maior susceptibilidade para a ocorrência de acidentes vasculares cerebrais aterotrombóticos, sugerindo que o que aprendemos sobre darhgef10 em Drosophila pode ter implicações do ponto de vista clínico para a saúde humana. ----------------------------- ABSTRACT: Mutations in genes controlling heart development and abnormalities in any of its steps frequently cause cardiac malformations, the most common type of birth defects in humans, affecting nearly 1% of births per year. Hence around 20 million adults are expected to live with a congenital heart defect. The Drosophila melanogaster heart, called dorsal vessel, is a relatively simple organ that acts as a muscular pump contracting automatically to allow the circulation of hemolymph. Drosophila heart formation shares many similarities with heart development in vertebrates providing a powerful system to study gene networks and regulatory pathways involved in heart development. We have previously identified a Drosophila gene, darhgef10, which is strongly expressed in the developing heart and when deleted, leads to flies with highly prevalent yet subtle heart abnormalities, compatible with unchallenged life in the laboratory. Our aims were to phenotypically characterize homozygous null darhgef10 mutants, characterize the subcellular localization of dArhgef10 and to study the cellular basis of the misaligned cardioblasts defect. We found that about half of darhgef10 mutants die during development. However, the survivors surprisingly have a nearly normal developmental time, adult locomotor behavior and total lifespan. Detection of transgene-derived dArhgef10 protein in vitro and in vivo using custom antibodies revealed a cytosolic protein slightly enriched in the cellular membranes and associated with F-actin. Tissue-specific darhgef10 expression disrupts the normal morphology of developing muscles, salivary glands and the eye. Live imaging of darhgef10 mutant embryos revealed that heart defect could be caused by a reduced capacity of attachment of pericardial cells and/or alary muscle to dorsal vessel. The human homolog of darhgef10 is also expressed in the heart and is a susceptibility gene for atherothrombotic stroke, suggesting that what we learn about the function of this gene and its phenotypes in Drosophila could have implications to human health.
Resumo:
Beginning with a patient presenting with an atrial septal defect (ASD) of the secundum type, the genealogy was identified in four affected individuals who belonged to three successive generations of the same family. The defects were visually confirmed in all individuals and were found to be anatomically similar. No other congenital malformations were present in these individuals. The genealogy was identified in 1972, when ASD recurred in two generations, and it was concluded that the mechanism of transmission was autosomal recessive. The fifth individual, identified 21 years later, and having an anomaly identical to that of the others, was the child of a couple who had no consaguinity and whose mother was a member of the previously studied genealogy. Considering the absence of phenotype in the parents and the rarity of the ASD gene in the general population, the occurrence of the uniparental disomy for this family nucleus, and the same autosomal recessive mechanism of transmission by this affected individual is possible. This study reports the familial occurrence of ASD by genetic mechanisms of transmission, emphasizing the necessity for genetic-clinical studies in members of the familial nucleus in order to detect new carriers, who usually are asymptomatic, thereby allowing for early and adequate treatment of individuals who may be affected.
Resumo:
Double outlet right ventricle (DORV) is a heterogeneous group of abnormal ventriculoarterial connections where, by definition, both great arteries (pulmonary artery and aorta) arise primarily from the morphologically right ventricle. This condition affects 1-1.5% of the patients with congenital heart diseases, with a frequency of 1 in each 10,000 live births. We report the case of an 18-day-old infant with DORV and extremely rare anatomical features, such as anterior and left-sided aorta and subpulmonary ventricular septal defect (VSD). In addition to the anatomic features, the role of the echocardiogram for guiding the diagnosis and the surgical therapy of this congenital heart disease are discussed.
Resumo:
Supplementary data associated with this article can be found, in the online version, at: http://dx.doi.org/10.1016/j.cej.2016.03.148.
Resumo:
OBJECTIVE: To study mitral valve function in the postoperative period after correction of the partial form of atrioventricular septal defect. METHODS: Fifty patients underwent surgical correction of the partial form of atrioventricular septal defect. Their mean age was 11.8 years and 62% of the patients were males. Preoperative echocardiography showed moderate and severe mitral insufficiency in 44% of the patients. The mitral valve cleft was sutured in 45 (90%) patients (group II - GII). Echocardiographies were performed in the early postoperative period, and 6 and 12 months after hospital discharge. RESULTS: The patients who had some type of arrhythmia in the postoperative period had ostium primum atrial septal defect of a larger size (2.74 x 2.08 cm). All 5 patients in group I (GI), who did not undergo closure of the cleft, had a competent mitral valve or mild mitral insufficiency in the preoperative period. One of these patients began to have moderate mitral insufficiency in the postoperative period. On the other hand, in GII, 88.8% and 82.2% of the patients had competent mitral valve or mild mitral insufficiency in the early and late postoperative periods, respectively. CONCLUSION: The mitral valve cleft was repaired in 90% of cases. Echocardiography revealed competent mitral valve or mild mitral insufficiency in 88.8% and 82.2% of GII patients in the early and late postoperative periods, respectively.