952 resultados para Crop yield
Resumo:
The formulation of a new process-based crop model, the general large-area model (GLAM) for annual crops is presented. The model has been designed to operate on spatial scales commensurate with those of global and regional climate models. It aims to simulate the impact of climate on crop yield. Procedures for model parameter determination and optimisation are described, and demonstrated for the prediction of groundnut (i.e. peanut; Arachis hypogaea L.) yields across India for the period 1966-1989. Optimal parameters (e.g. extinction coefficient, transpiration efficiency, rate of change of harvest index) were stable over space and time, provided the estimate of the yield technology trend was based on the full 24-year period. The model has two location-specific parameters, the planting date, and the yield gap parameter. The latter varies spatially and is determined by calibration. The optimal value varies slightly when different input data are used. The model was tested using a historical data set on a 2.5degrees x 2.5degrees grid to simulate yields. Three sites are examined in detail-grid cells from Gujarat in the west, Andhra Pradesh towards the south, and Uttar Pradesh in the north. Agreement between observed and modelled yield was variable, with correlation coefficients of 0.74, 0.42 and 0, respectively. Skill was highest where the climate signal was greatest, and correlations were comparable to or greater than correlations with seasonal mean rainfall. Yields from all 35 cells were aggregated to simulate all-India yield. The correlation coefficient between observed and simulated yields was 0.76, and the root mean square error was 8.4% of the mean yield. The model can be easily extended to any annual crop for the investigation of the impacts of climate variability (or change) on crop yield over large areas. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Crop production is inherently sensitive to variability in climate. Temperature is a major determinant of the rate of plant development and, under climate change, warmer temperatures that shorten development stages of determinate crops will most probably reduce the yield of a given variety. Earlier crop flowering and maturity have been observed and documented in recent decades, and these are often associated with warmer (spring) temperatures. However, farm management practices have also changed and the attribution of observed changes in phenology to climate change per se is difficult. Increases in atmospheric [CO2] often advance the time of flowering by a few days, but measurements in FACE (free air CO2 enrichment) field-based experiments suggest that elevated [CO2] has little or no effect on the rate of development other than small advances in development associated with a warmer canopy temperature. The rate of development (inverse of the duration from sowing to flowering) is largely determined by responses to temperature and photoperiod, and the effects of temperature and of photoperiod at optimum and suboptimum temperatures can be quantified and predicted. However, responses to temperature, and more particularly photoperiod, at supraoptimal temperature are not well understood. Analysis of a comprehensive data set of time to tassel initiation in maize (Zea mays) with a wide range of photoperiods above and below the optimum suggests that photoperiod modulates the negative effects of temperature above the optimum. A simulation analysis of the effects of prescribed increases in temperature (0-6 degrees C in + 1 degrees C steps) and temperature variability (0% and + 50%) on days to tassel initiation showed that tassel initiation occurs later, and variability was increased, as the temperature exceeds the optimum in models both with and without photoperiod sensitivity. However, the inclusion of photoperiod sensitivity above the optimum temperature resulted in a higher apparent optimum temperature and less variability in the time of tassel initiation. Given the importance of changes in plant development for crop yield under climate change, the effects of photoperiod and temperature on development rates above the optimum temperature clearly merit further research, and some of the knowledge gaps are identified herein.
Resumo:
Apical leaf necrosis is a physiological process related to nitrogen (N) dynamics in the leaf. Pathogens use leaf nutrients and can thus accelerate this physiological apical necrosis. This process differs from necrosis occurring around pathogen lesions (lesion-induced necrosis), which is a direct result of the interaction between pathogen hyphae and leaf cells. This paper primarily concentrates on apical necrosis, only incorporating lesion-induced necrosis by necessity. The relationship between pathogen dynamics and physiological apical leaf necrosis is modelled through leaf nitrogen dynamics. The specific case of Puccinia triticina infections on Triticum aestivum flag leaves is studied. In the model, conversion of indirectly available N in the form of, for example, leaf cell proteins (N-2(t)) into directly available N (N-1(t), i.e. the form of N that can directly be used by either pathogen or plant sinks) results in apical necrosis. The model reproduces observed trends of disease severity, apical necrosis and green leaf area (GLA) and leaf N dynamics of uninfected and infected leaves. Decreasing the initial amount of directly available N results in earlier necrosis onset and longer necrosis duration. Decreasing the initial amount of indirectly available N, has no effect on necrosis onset and shortens necrosis duration. The model could be used to develop hypotheses on how the disease-GLA relation affects yield loss, which can be tested experimentally. Upon incorporation into crop simulation models, the model might provide a tool to more accurately estimate crop yield and effects of disease management strategies in crops sensitive to fungal pathogens.
Resumo:
The Group on Earth Observations System of Systems, GEOSS, is a co-ordinated initiative by many nations to address the needs for earth-system information expressed by the 2002 World Summit on Sustainable Development. We discuss the role of earth-system modelling and data assimilation in transforming earth-system observations into the predictive and status-assessment products required by GEOSS, across many areas of socio-economic interest. First we review recent gains in the predictive skill of operational global earth-system models, on time-scales of days to several seasons. We then discuss recent work to develop from the global predictions a diverse set of end-user applications which can meet GEOSS requirements for information of socio-economic benefit; examples include forecasts of coastal storm surges, floods in large river basins, seasonal crop yield forecasts and seasonal lead-time alerts for malaria epidemics. We note ongoing efforts to extend operational earth-system modelling and assimilation capabilities to atmospheric composition, in support of improved services for air-quality forecasts and for treaty assessment. We next sketch likely GEOSS observational requirements in the coming decades. In concluding, we reflect on the cost of earth observations relative to the modest cost of transforming the observations into information of socio-economic value.
Resumo:
Recent changes in climate have had a measurable impact on crop yield in China. The objective of this study is to investigate how climate variability affects wheat yield in China at different spatial scales. First the response of wheat yield to the climate at the provincial level from 1978 to 1995 for China was analysed. Wheat yield variability was only correlated with climate variability in some regions of China. At the provincial level, the variability of precipitation had a negative impact on wheat yield in parts of southeast China, but the seasonal mean temperature had a negative impact on wheat yield in only a few provinces, where significant variability in precipitation explained about 23–60% of yield variability, and temperature variability accounted for 37–41% of yield variability from 1978 to 1995. The correlation between wheat yield and climate for the whole of China from 1985 to 2000 was investigated at five spatial scales using climate data. The Climate Research Unit (CRU) and National Centers for Environmental Prediction (NCEP) proportions of the grid cells with a significant yield–precipitation correlation declined progressively from 14.6% at 0.5° to 0% at 5° scale. In contrast, the proportion of grid cells significant for the yield–temperature correlation increased progressively from 1.9% at 0.5° scale to 16% at 5° scale. This indicates that the variability of precipitation has a higher association with wheat yield at small scales (0.5°, 2°/2.5°) than at larger scales (4°/5.0°); but wheat yield has a good association with temperature at all levels of aggregation. The precipitation variable at the smaller scales (0.5°, 2°/2.5°) is a dominant factor in determining inter-annual wheat yield variability more so than at the larger scales (4°/5°). We conclude that in the current climate the relationship between wheat yield and each of precipitation and temperature becomes weaker and stronger, respectively, with an increase in spatial scale.
Resumo:
Background: Seed storage proteins are a major source of dietary protein, and the content of such proteins determines both the quantity and quality of crop yield. Significantly, examination of the protein content in the seeds of crop plants shows a distinct difference between monocots and dicots. Thus, it is expected that there are different evolutionary patterns in the genes underlying protein synthesis in the seeds of these two groups of plants. Results: Gene duplication, evolutionary rate and positive selection of a major gene family of seed storage proteins (the 11S globulin genes), were compared in dicots and monocots. The results, obtained from five species in each group, show more gene duplications, a higher evolutionary rate and positive selections of this gene family in dicots, which are rich in 11S globulins, but not in the monocots. Conclusion: Our findings provide evidence to support the suggestion that gene duplication and an accelerated evolutionary rate may be associated with higher protein synthesis in dicots as compared to monocots.
Resumo:
Starch is the most widespread and abundant storage carbohydrate in crops and its production is critical to both crop yield and quality. As regards the starch content in the seeds of crop plants, there are distinct difference between grasses (Poaceae) and dicots. However, few studies have described the evolutionary pattern of genes in the starch biosynthetic pathway in these two groups of plants. In this study, therefore, an attempt was made to compare the evolutionary rate, gene duplication and selective pattern of the key genes involved in this pathway between the two groups, using five grasses and five dicots as materials. The results showed (i) distinct differences in patterns of gene duplication and loss between grasses and dicots; duplication in grasses mainly occurred prior to the divergence of grasses, whereas duplication mostly occurred in individual species within the dicots; there is less gene loss in grasses than in dicots; (ii) a considerably higher evolutionary rate in grasses than in dicots in most gene families analyzed; (iii) evidence of a different selective pattern between grasses and dicots; positive selection may have occurred asymmetrically in grasses in some gene families, e.g. AGPase small subunit. Therefore, we deduced that gene duplication contributes to, and a higher evolutionary rate is associated with, the higher starch content in grasses. In addition, two novel aspects of the evolution of the starch biosynthetic pathway were observed.
Resumo:
While many studies have demonstrated the sensitivities of plants and of crop yield to a changing climate, a major challenge for the agricultural research community is to relate these findings to the broader societal concern with food security. This paper reviews the direct effects of climate on both crop growth and yield and on plant pests and pathogens and the interactions that may occur between crops, pests, and pathogens under changed climate. Finally, we consider the contribution that better understanding of the roles of pests and pathogens in crop production systems might make to enhanced food security. Evidence for the measured climate change on crops and their associated pests and pathogens is starting to be documented. Globally atmospheric [CO(2)] has increased, and in northern latitudes mean temperature at many locations has increased by about 1.0-1.4 degrees C with accompanying changes in pest and pathogen incidence and to farming practices. Many pests and pathogens exhibit considerable capacity for generating, recombining, and selecting fit combinations of variants in key pathogenicity, fitness, and aggressiveness traits that there is little doubt that any new opportunities resulting from climate change will be exploited by them. However, the interactions between crops and pests and pathogens are complex and poorly understood in the context of climate change. More mechanistic inclusion of pests and pathogen effects in crop models would lead to more realistic predictions of crop production on a regional scale and thereby assist in the development of more robust regional food security policies.
Resumo:
Improved crop yield forecasts could enable more effective adaptation to climate variability and change. Here, we explore how to combine historical observations of crop yields and weather with climate model simulations to produce crop yield projections for decision relevant timescales. Firstly, the effects on historical crop yields of improved technology, precipitation and daily maximum temperatures are modelled empirically, accounting for a nonlinear technology trend and interactions between temperature and precipitation, and applied specifically for a case study of maize in France. The relative importance of precipitation variability for maize yields in France has decreased significantly since the 1960s, likely due to increased irrigation. In addition, heat stress is found to be as important for yield as precipitation since around 2000. A significant reduction in maize yield is found for each day with a maximum temperature above 32 °C, in broad agreement with previous estimates. The recent increase in such hot days has likely contributed to the observed yield stagnation. Furthermore, a general method for producing near-term crop yield projections, based on climate model simulations, is developed and utilized. We use projections of future daily maximum temperatures to assess the likely change in yields due to variations in climate. Importantly, we calibrate the climate model projections using observed data to ensure both reliable temperature mean and daily variability characteristics, and demonstrate that these methods work using retrospective predictions. We conclude that, to offset the projected increased daily maximum temperatures over France, improved technology will need to increase base level yields by 12% to be confident about maintaining current levels of yield for the period 2016–2035; the current rate of yield technology increase is not sufficient to meet this target.
Resumo:
Farmland invertebrates play a pivotal role in the provision of ecosystem services, i.e. services that benefit humans. For example, bumblebees, solitary bees and honeybees, are crucial to the pollination of many of the world's crops and wildflowers, with over 70% of the world's major food crops dependent on the pollination services provided by these insects. The larvae of some butterfly species are considered to be pests; however, together with moth and sawfly larvae, they represent a key dietary component for many farmland birds. Spiders and ground beetles predate on crop pests including aphids, whilst soil macrofauna such as earthworms are vital for soil fertility services and nutrient recycling. Despite their importance, population declines of invertebrates have been observed during the last sixty years in the UK and NW Europe. For example, seven UK bumblebee species are in decline, and in the last 20 years, the species Bombus subterraneus (short-haired bumblebee) has become extinct, whilst there was a 54% decline in honeybee colony numbers in England from 1985 to 2005. Comparable trends have been documented for butterflies with a 23% decline in UK farmland species such as Anthocharis cardamines (orange tip) between 1990 and 2007. These declines have been widely attributed to the modern intensive arable management practices that have been developed to maximise crop yield. For example, loss and fragmentation of foraging and nesting habitats, including species-rich meadows and hedgerows, have been implicated in the decline of bees and butterflies. Increased use of herbicides and fertilisers has caused detrimental effects on many plant species with negative consequences for predatory invertebrates such as spiders and beetles which rely on plants for food and shelter.
Resumo:
Societal concern is growing about the consequences of climate change for food systems and, in a number of regions, for food security. There is also concern that meeting the rising demand for food is leading to environmental degradation thereby exacerbating factors in part responsible for climate change, and further undermining the food systems upon which food security is based. A major emphasis of climate change/food security research over recent years has addressed the agronomic aspects of climate change, and particularly crop yield. This has provided an excellent foundation for assessments of how climate change may affect crop productivity, but the connectivity between these results and the broader issues of food security at large are relatively poorly explored; too often discussions of food security policy appear to be based on a relatively narrow agronomic perspective. To overcome the limitation of current agronomic research outputs there are several scientific challenges where further agronomic effort is necessary, and where agronomic research results can effectively contribute to the broader issues underlying food security. First is the need to better understand how climate change will affect cropping systems including both direct effects on the crops themselves and indirect effects as a result of changed pest and weed dynamics and altered soil and water conditions. Second is the need to assess technical and policy options for either reducing the deleterious impacts or enhancing the benefits of climate change on cropping systems while minimising further environmental degradation. Third is the need to understand how best to address the information needs of policy makers and report and communicate agronomic research results in a manner that will assist the development of food systems adapted to climate change. There are, however, two important considerations regarding these agronomic research contributions to the food security/climate change debate. The first concerns scale. Agronomic research has traditionally been conducted at plot scale over a growing season or perhaps a few years, but many of the issues related to food security operate at larger spatial and temporal scales. Over the last decade, agronomists have begun to establish trials at landscape scale, but there are a number of methodological challenges to be overcome at such scales. The second concerns the position of crop production (which is a primary focus of agronomic research) in the broader context of food security. Production is clearly important, but food distribution and exchange also determine food availability while access to food and food utilisation are other important components of food security. Therefore, while agronomic research alone cannot address all food security/climate change issues (and hence the balance of investment in research and development for crop production vis à vis other aspects of food security needs to be assessed), it will nevertheless continue to have an important role to play: it both improves understanding of the impacts of climate change on crop production and helps to develop adaptation options; and also – and crucially – it improves understanding of the consequences of different adaptation options on further climate forcing. This role can further be strengthened if agronomists work alongside other scientists to develop adaptation options that are not only effective in terms of crop production, but are also environmentally and economically robust, at landscape and regional scales. Furthermore, such integrated approaches to adaptation research are much more likely to address the information need of policy makers. The potential for stronger linkages between the results of agronomic research in the context of climate change and the policy environment will thus be enhanced.
Resumo:
As climate changes, temperatures will play an increasing role in determining crop yield. Both climate model error and lack of constrained physiological thresholds limit the predictability of yield. We used a perturbed-parameter climate model ensemble with two methods of bias-correction as input to a regional-scale wheat simulation model over India to examine future yields. This model configuration accounted for uncertainty in climate, planting date, optimization, temperature-induced changes in development rate and reproduction. It also accounts for lethal temperatures, which have been somewhat neglected to date. Using uncertainty decomposition, we found that fractional uncertainty due to temperature-driven processes in the crop model was on average larger than climate model uncertainty (0.56 versus 0.44), and that the crop model uncertainty is dominated by crop development. Simulations with the raw compared to the bias-corrected climate data did not agree on the impact on future wheat yield, nor its geographical distribution. However the method of bias-correction was not an important source of uncertainty. We conclude that bias-correction of climate model data and improved constraints on especially crop development are critical for robust impact predictions.
Resumo:
Insect pollination is important for food production globally and apples are one of the major fruit crops which are reliant on this ecosystem service. It is fundamentally important that the full range of benefits of insect pollination to crop production are understood, if the costs of interventions aiming to enhance pollination are to be compared against the costs of the interventions themselves. Most previous studies have simply assessed the benefits of pollination to crop yield and ignored quality benefits and how these translate through to economic values. In the present study we examine the influence of insect pollination services on farmgate output of two important UK apple varieties; Gala and Cox. Using field experiments, we quantify the influence of insect pollination on yield and importantly quality and whether either may be limited by sub-optimal insect pollination. Using an expanded bioeconomic model we value insect pollination to UK apple production and establish the potential for improvement through pollination service management. We show that insects are essential in the production of both varieties of apple in the UK and contribute a total of £36.7 million per annum, over £6 million more than the value calculated using more conventional dependence ratio methods. Insect pollination not only affects the quantity of production but can also have marked impacts on the quality of apples, influencing size, shape and effecting their classification for market. These effects are variety specific however. Due to the influence of pollination on both yield and quality in Gala, there is potential for insect pollination services to improve UK output by up to £5.7 million per annum. Our research shows that continued pollinator decline could have serious financial implications for the apple industry but there is considerable scope through management of wild pollinators or using managed pollinator augmentation, to improve the quality of production. Furthermore, we show that it is critically important to consider all production parameters including quality, varietal differences and management costs when valuing the pollination service of any crop so investment in pollinator management can be proportional to its contribution.
Resumo:
Three sludge types from the same treatment stream (undigested liquid, anaerobically digested liquid and dewatered, anaerobically digested cake) were used in a field based tub study. Amendments (4, 8, and 16 Mg dry solid (ds)ha(-1)) were incorporated into the upper 15 cm of a sandy loam soil prior to sowing with rye-grass (Lolium perenne L.). Nitrogen transformations in the soil were determined for the 80 d period following incorporation. Nitrogen uptake and crop yield were measured in the cut sward 35 and 70 d after sowing. The study showed that application of sewage sludge at rates as low as 4 Mgha(-1) can have a nutritional benefit to rye-grass over the two harvests. Differences in N transformation, and hence crop nutritional benefit, between sludge types were evident throughout the experiment. In particular, the dewatering process changed the mineral N characteristics of the anaerobically digested sludge, which, when not dewatered, outperformed the other sludges in terms of yield and mineralisation rate at both harvests. The dewatered sludge produced the lowest yield of rye-grass. The undigested liquid sludge had the lowest foliar N and soil NO(3)-N concentrations, possibly immobilised as the large oxidisable C component of this sludge was metabolised by the microbial biomass. Correlation data support the concept of preferential uptake of NH(4)-N over NO(3)-N in Lolium perenne. Results are discussed in the context of managing sludge type and application for a plant nutrient source and NO(3)-N release.
Resumo:
Understanding the relationships between trait diversity, species diversity and ecosystem functioning is essential for sustainable management. For functions comprising two trophic levels, trait matching between interacting partners should also drive functioning. However, the predictive ability of trait diversity and matching is unclear for most functions, particularly for crop pollination, where interacting partners did not necessarily co-evolve. World-wide, we collected data on traits of flower visitors and crops, visitation rates to crop flowers per insect species and fruit set in 469 fields of 33 crop systems. Through hierarchical mixed-effects models, we tested whether flower visitor trait diversity and/or trait matching between flower visitors and crops improve the prediction of crop fruit set (functioning) beyond flower visitor species diversity and abundance. Flower visitor trait diversity was positively related to fruit set, but surprisingly did not explain more variation than flower visitor species diversity. The best prediction of fruit set was obtained by matching traits of flower visitors (body size and mouthpart length) and crops (nectar accessibility of flowers) in addition to flower visitor abundance, species richness and species evenness. Fruit set increased with species richness, and more so in assemblages with high evenness, indicating that additional species of flower visitors contribute more to crop pollination when species abundances are similar. Synthesis and applications. Despite contrasting floral traits for crops world-wide, only the abundance of a few pollinator species is commonly managed for greater yield. Our results suggest that the identification and enhancement of pollinator species with traits matching those of the focal crop, as well as the enhancement of pollinator richness and evenness, will increase crop yield beyond current practices. Furthermore, we show that field practitioners can predict and manage agroecosystems for pollination services based on knowledge of just a few traits that are known for a wide range of flower visitor species.