912 resultados para Critical current
Resumo:
Superconducting BSCCO samples made by melt-texturing process were prepared with the addition of calcium zirconate and calcium silicate nanoparticles. Bi:2212 melt-textured composites prepared with I wt.% of either addition showed different behavior for the critical current density as a function of the applied field, indicating that for each additional compound the improvement can be associated to different enhancement mechanisms, such as the creation of pinning centers and the increase on the connectivity of the grains. The estimated pinning forces indicated higher values for the calcium compound containing samples. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A single-phase superconducting Fault Current Limiter using a bifilar coil of BSCCO-2212 tube was tested in 220 V-60 Hz line during fault current between 1 kA to 4 kA, operating in 77 K. In this work are presented the critical current dependence as a function of an external magnetic field applied and the results can be used to predict the current limiter performance. The experimental setup is described and the test results are presented for the unit conducting a steady nominal AC current of 200 A, and also during the fault time (1 to 6 cycles). The performance of the bifilar coil to provide the limiting impedance associated with the dynamic resistance developed during the beginning of the fault was analyzed and compared with other types of superconducting current limiters.
Resumo:
During the winding process of HTS coils the tapes of Bi-2223 are subjected to the influence of bending strain, axial strain, compressive force and torsional deformation resulting in I-c degradation. In the literature the effects of the individual strain components are separately analyzed in spite of during coil winding and energizing the strain-stress effects are combined. In this work using commercial tapes of Bi-2223 Ag/AgMg with and without stainless steel reinforcement several samples were wound on cylindrical FRP G-10 holder in which different combined strains are applied. Measurements of I - V characteristic curves are done to determine the degree of critical current degradation and the operational limits. The results are compared with the I, values of short samples and other specimens subjected to deformation generated by loading types such as tensile and bending strain.
Resumo:
The effect of the properties of starting boron powders on the superconducting properties of MgB2 has been studied. The 92% and 96% pure powders produce lower surface reactivity and larger particle size than the 99% boron powder, as can be seen from Brunauer - Emmett - Teller (BET) and scanning electron microscopy (SEM) results, indicating that the low purity powders cannot be used to archive the same superconducting properties as those of samples made from pure 99% boron powder. However, the purity of 92% and 96% boron powders can be improved by using a simple chemical process, leading to enhanced magnetic critical current densities J(c). From x-ray diffraction (XRD) measurement, oxide impurity has been observed, which might be originated from the B2O3 phase in the boron powders. In order to get high performance MgB2, it is obviously important to control the phase composition and microstructure of amorphous boron starting powders and solid reaction conditions.
Resumo:
In order to study the influence of the amorphous Boron powder on the superconducting properties, MgB2 bulk samples were prepared using 96% and 99% pure commercial Boron powder as well as 92% commercial Boron powder after purification process. The results showed that the original 96% and the purified 92% powders have larger particle size compared to the pure 99% Boron powder, which leads to reduce magnetic critical current densities. In order to get higher performance MgB2, the purified low grade Boron powder need further control of their microstructure such as smaller particle size to enhance flux pinning from the grain boundaries which represent effective pinning centers. © 2007 Elsevier B.V. All rights reserved.
Resumo:
MgB2 bulk samples containing different proportions of Mg-Ga powder were prepared by an in situ reaction technique. The Mg-Ga powder was obtained via high energy ball milling of a Mg-10 at.% Ga composite, which was fabricated by melting of pure magnesium and gallium metals inside encapsulated stainless steel tube at 655 °C in a controlled atmosphere. The MgB2 samples containing 0, 1, 3, 5 and 7 wt.% of MgGa addition were sintered at 650 °C for 30 min in argon atmosphere. Magnetic measurements performed at 5 K and 20 K showed improved critical current density, Jc, in the low magnetic field range for samples with MgGa addition. The critical temperature, Tc, for all samples with gallium additions is consistently higher when compared to the pure MgB2. © 2007 Elsevier B.V. All rights reserved.
Resumo:
Using numerical simulations, we analyze the anisotropy effects in the critical currents and dynamical properties of vortices in a thin superconducting film submitted to hexagonal and Kagomé periodical pinning arrays. The calculations are performed at zero temperature, for transport currents parallel and perpendicular to the main axis of the lattice, and parallel to the diagonal axis of the rhombic unit cell. We show that the critical currents and dynamic properties are anisotropic for both pinning arrays and all directions of the transport current. The anisotropic effects are more significant just above the critical current and disappear with higher values of current and both pinning arrays. The dynamical phases for each case and a wide range of transport forces are analyzed. © 2012 Springer Science+Business Media, LLC.
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciências Sociais - FFC
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC