960 resultados para Cr2O3-sensitized


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of a study of the variation in photocatalytic activity of TiO2, as measured by its ability to photomineralise 4-chlorophenol, as a function of temperature used to anneal the TiO2, are reported. Heat treatment of the TiO2 leads to a marked decrease in its photocatalytic activity at annealing temperatures above 600-degrees-C. This decrease is associated with a concomitant drop in the specific surface area of the TiO2, owing to particle sintering, rather than the anatase to rutile transformation, which occurs largely at temperatures above 700-degrees-C. There is a reasonable correlation between photocatalytic activity and the surface area of the aggregate particles in the dispersions of the different heat-treated TiO2 samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of photomineralization of 4-chlorophenol (4-CP) sensitized by Degussa P25 TiO2 in O2-saturated solution is studied as a function of the following different experimental parameters: pH, [TiO2], percentage O2 [O2], [4-CP], T, I, lambda and [KNO3]. At pH 2 and T=30-degrees-C the initial relative rate of CO2 photogeneration R(CO2) conforms to a Langmuir-Hinshelwood-type kinetic scheme and the relationship between R(CO2) and the various experimental parameters may be summarized as follows: R(CO2) = gammaK(O2)[O2](I(a))(theta)K(4-CP]0/(1 + K(O2])(1 + K(4-CP)[4-CP]0) where gamma is a proportionality constant, K(O2) = 0.044 +/- 0.005[O2]-1, theta = 0.74 +/- 0.05 and K(4-CP) = (29 +/- 3) x 10(3) dm3 mol-1. The overall activation energy for this photosystem was determined as 16 +/- 2 kJ mol-1. This work forms part of an overall characterization study in which it is proposed that the 4-CP-TiO2-O2 photosystem is adopted as a standard test system for incorporation into all future semiconductor-sensitized photomineralization studies in order to facilitate comparisons between the results of the different studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photomineralisation of 4-chlorophenol (4-CP) sensitised by Degussa P25 TiO2 in O2-saturated solution represents a possible standard test system in semiconductor-sensitised photomineralisation studies. As part of a detailed examination of this photosystem, the results of the temporal variations in the concentrations of 4-CP, CO2, Cl- and the major organic intermediates, namely, 4-chlorocatechol (4-CC), hydroquinone (HQ), benzoquinone and 4-chlororesorcinol, are reported. The observed variations in [4-CP], [4-CC], [HQ] and [CO2] fit those predicted by a kinetic model which utilises kinetic equations with a Langmuir-Hinshelwood form and assumes that there are three major possible routes in which the photogenerated hydroxyl radicals can react with 4-CP, ie. 4-CP --> 4-CC, 4-CP --> HQ and 4-CP --> (unstable intermediate) --> CO2 and that these routes have the following probabilities of occurring: 48%, 10% and 42%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of the recovery of the photoinduced transient bleaching of colloidal CdS in the presence of different electron acceptors are examined. In the presence of the zwitterionic viologen, N,N'-dipropyl-2,2'-bipyridinium disulphonate, excitation of colloidal CdS at different flash intensities generates a series of decay profiles which are superimposed when normalized. The shape of the decay curves are as predicted by a first-order activation-controlled model for a log-normal distribution of particles sizes. In contrast, the variation in flash intensity in the presence of a second viologen, N,N'-dipropyl-4,4'-bipyridinium sulphonate, generates normalized decay traces which broaden with increasing flash intensity. This behaviour is predicted by a zero-order diffusion-controlled model for a log-normal distribution of particle radii. The photoreduction of a number of other oxidants sensitized by colloidal CdS is examined and the shape of the decay kinetics interpreted via either the first- or zero-order kinetics models. The rate constants and activation energies derived using these models are consistent with the values expected for an activation- or diffusion-controlled reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of photoreduction of methyl orange by ethylenediaminetetraacetic acid (EDTA) sensitized by colloidal CdS are reported as a function of [methyl orange], [O2] and [EDTA]. The results are interpreted using a reaction scheme which was proposed in an earlier paper for the same reaction sensitized by a powdered dispersion of highly crystalline CdS. An analysis of the results for the CdS colloid based on this reaction scheme shows that the rate of dye reduction by photogenerated electrons is approximately 50 times greater than the rate of oxygen reduction and the rate of scavenging of the photogenerated holes is approximately 7000 times greater than the rate of recombination. These findings are discussed in the light of similar observations reported for powdered CdS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dye-sensitized solar cells have attracted intense research attention owing to their ease of fabrication, cost-effectiveness and high efficiency in converting solar energy. Noble platinum is generally used as catalytic counter electrode for redox mediators in electrolyte solution. Unfortunately, platinum is expensive and non-sustainable for long-term applications. Therefore, researchers are facing with the challenge of developing low-cost and earth-abundant alternatives. So far, rational screening of non-platinum counter electrodes has been hamstrung by the lack of understanding about the electrocatalytic process of redox mediators on various counter electrodes. Here, using first-principle quantum chemical calculations, we studied the electrocatalytic process of redox mediators and predicted electrocatalytic activity of potential semiconductor counter electrodes. On the basis of theoretical predictions, we successfully used rust (alpha-Fe2O3) as a new counter electrode catalyst, which demonstrates promising electrocatalytic activity towards triiodide reduction at a rate comparable to platinum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dye-sensitized solar cells (DSCs) are promising alternatives to conventional silicon devices because of their simple fabrication procedure, low cost, and high efficiency. Platinum is generally used as a superior counter electrode (CE) material, but the disadvantages such as high cost and low abundance greatly restrict the large-scale application of DSCs. An efficient and sustainable way to overcome the limited supply of Pt is the development of high-efficiency Pt-free CE materials, which should possess both high electrical conductivity and superior electrocatalytic activity simultaneously. Herein, for the first time, a two-step strategy to synthesize ruthenium dioxide (RuO2) nanocrystals is reported, and it is shown that RuO2 catalysts exhibit promising electrocatalytic activity towards triiodide reduction, which results in comparable energy conversion efficiency to that of conventional Pt CEs. More importantly, by virtue of first-principles calculations, the catalytic mechanism of electrocatalysis for triiodide reduction on various CEs is investigated systematically and it is found that the electrochemical triiodide reduction reaction on RuO2 catalyst surfaces can be enhanced significantly, owing to the ideal combination of good electrocatalytic activity and high electrical conductivity.