963 resultados para Corn - Physiology
Resumo:
The comparative response of three sorghum (E-57, TEY 101 and C- 102) and of three corn cultivars (HMD-7974, Centralmex and Piranão) to N, P and K applications was studied in a soil from Anhembi, SP, classifield as Distrophic quartz sand (AQd) was studied. Leaf analyses were made to assess the nutritional status of the two crops. Main conclusions were the following. 1. Sorghum yieldel more than corn; 2. Both sorghum and corn varieties showed different capacities to absorb N, P and K from the soil and to fertilizer application; 3. There was no response to K2O fertilization; 4. Only Piranão increased yield when suplemented with a mixture of micronutrientes; 5. Direct relationships between rates of N and P2O5 and yield and leaf content were found; 6. Direct relationships between rates of N and P2O5 and yield and leaf content were found; 7. The following leaf levels were considered to be adequate, respectively for sorghum and corn: N - 2,00 - 2,25%, 3,25 - 3,50%; P - 0,30 - 0,40, 0,45 - 0,50; K -2,00 - 2,50, 2,20 - 2,40%; Ca - 0,20 - 0,40, 0,44- 0,72% Mg - 0,25 - 0,40, 0,34 - 0,60%; S - 0,50 - 0,70, 0,72 -0,80; Cu - 7 - 10, 11 - 15%; Fe - 84 - 170, 98 - 125%; Mn - 58 - 72, 66 - 85%; Zn - 10 - 14, 18 - 22; critical levels, however, do very depending upon cultivar.
Resumo:
The aim of this study was to determine whether breath 13CO2 measurements could be used to assess the compliance to a diet containing carbohydrates naturally enriched in 13C. The study was divided into two periods: Period 1 (baseline of 4 days) with low 13C/12C ratio carbohydrates. Period 2 (5 days) isocaloric diet with a high 13C/12C ratio (corn, cane sugar, pineapple, millet) carbohydrates. Measurements were made of respiratory gas exchange by indirect calorimetry, urinary nitrogen excretion and breath 13CO2 every morning in post-absorptive conditions, both in resting state and during a 45-min low intensity exercise (walking on a treadmill). The subjects were 10 healthy lean women (BMI 20.4 +/- 1.7 kg/m2, % body fat 24.4 +/- 1.3%), the 13C enrichment of oxidized carbohydrate and breath 13CO2 were compared to the enrichment of exogenous dietary carbohydrates. At rest the enrichment of oxidized carbohydrate increased significantly after one day of 13C carbohydrate enriched diet and reached a steady value (103 +/- 16%) similar to the enrichment of exogenous carbohydrates. During exercise, the 13C enrichment of oxidized carbohydrate remained significantly lower (68 +/- 17%) than that of dietary carbohydrates. The compliance to a diet with a high content of carbohydrates naturally enriched in 13C may be assessed from the measurement of breath 13CO2 enrichment combined with respiratory gas exchange in resting, postabsorptive conditions.
Resumo:
Report for the scientific sojourn at the Stanford University from January until June 2007. Music is well known for affecting human emotional states, yet the relationship between specific musical parameters and emotional responses is still not clear. With the advent of new human-computer interaction (HCI) technologies, it is now possible to derive emotion-related information from physiological data and use it as an input to interactive music systems. Providing such implicit musical HCI will be highly relevant for a number of applications including music therapy, diagnosis, nteractive gaming, and physiologically-based musical instruments. A key question in such physiology-based compositions is how sound synthesis parameters can be mapped to emotional states of valence and arousal. We used both verbal and heart rate responses to evaluate the affective power of five musical parameters. Our results show that a significant correlation exists between heart rate and the subjective evaluation of well-defined musical parameters. Brightness and loudness showed to be arousing parameters on subjective scale while harmonicity and even partial attenuation factor resulted in heart rate changes typically associated to valence. This demonstrates that a rational approach to designing emotion-driven music systems for our public installations and music therapy applications is possible.
Resumo:
High altitude constitutes an exciting natural laboratory for medical research. Although initially, the aim of high-altitude research was to understand the adaption of the organism to hypoxia and find treatments for altitude-related diseases, during the past decade or so, the scope of this research has broadened considerably. Two important observations led the foundation for the broadening of the scientific scope of high-altitude research. First, high-altitude pulmonary edema represents a unique model that allows studying fundamental mechanisms of pulmonary hypertension and lung edema in humans. Second, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary and systemic vascular dysfunction at an early stage. Here, we will review studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning lung edema and pulmonary hypertension and to the first direct demonstration of fetal programming of vascular dysfunction in humans.
Resumo:
The survival, physiology and gene expression profile of the phenanthrene-degrading Sphingomonas sp. LH128 was examined after an extended period of complete nutrient starvation and compared with a non-starved population that had been harvested in exponential phase. After 6 months of starvation in an isotonic solution, only 5 % of the initial population formed culturable cells. Microscopic observation of GFP fluorescent cells, however, suggested that a larger fraction of cells (up to 80 %) were still alive and apparently had entered a viable but non-culturable (VBNC) state. The strain displayed several cellular and genetic adaptive strategies to survive long-term starvation. Flow cytometry, microscopic observation and fatty acid methyl ester (FAME) analysis showed a reduction in cell size, a change in cell shape and an increase in the degree of membrane fatty acid saturation. Transcriptome analysis showed decreased expression of genes involved in ribosomal protein biosynthesis, chromosomal replication, cell division and aromatic catabolism, increased expression of genes involved in regulation of gene expression and efflux systems, genetic translocations, and degradation of rRNA and fatty acids. Those phenotypic and transcriptomic changes were not observed after 4 h of starvation. Despite the starvation situation, the polycyclic aromatic hydrocarbon (PAH) catabolic activity was immediate upon exposure to phenanthrene. We conclude that a large fraction of cells maintain viability after an extended period of starvation apparently due to tuning the expression of a wide variety of cellular processes. Due to these survival attributes, bacteria of the genus Sphingomonas, like strain LH128, could be considered as suitable targets for use in remediation of nutrient-poor PAH-contaminated environments.
Resumo:
A revolution occurred during the last decade in the comprehension of the physiology as well as in the physiopathology of iron metabolism. The purpose of this review is to summarize the recent knowledge that has accumulated, allowing a better comprehension of the mechanisms implicated in iron homeostasis. Iron metabolism is very fine tuned. The free molecule is very toxic; therefore, complex regulatory mechanisms have been developed in mammalian to insure adequate intestinal absorption, transportation, utilization, and elimination. 'Ironomics' certainly will be the future of the understanding of genes as well as of the protein-protein interactions involved in iron metabolism.
Resumo:
Résumé : Les jasmonates (JA), une famille d'hor1none végétale, jouent un rôle central dans la réponse à la blessure, et aux attaques d'insectes et de pathogènes. Les JA sont principalement dérivés d'un acide gras, l'acide linolénique. L'addition par une lipoxygénase d'une molécule d'oxygène à l'acide linolénique initie la synthèse de JA. Cependant les mécanismes régulant l'activation de la biosynthèse de JA ne sont pas encore connus. C'est pour cette raison que dans ce travail, nous avons caractérisé chez Arabidopsis thaliana (l'Arabette des Dames) un mutant fou2 dont l'activité lipoxygénase est plus élevée que celle d'une plante sauvage. Les niveaux de JA sont constitutivement plus élevés et l'activation de la synthèse de JA après blessure est fortement plus induite chez fou2 que chez le type sauvage. En outre, fou2 est plus résistant au pathogène Botrytis cinerea et à la chenille Spodoptera littoralis. Afin de comprendre quel mécanisme chez fou2 génére ce phénotype, nous avons cloné le gène responsable du phénotype de fou2. Le mutant fou2 porte une mutation dans le gène d'un canal à deux pores transportant probablement du potassium, du lumen de la vacuole végétale vers le compartiment cytosolique. L'analyse du protéome de fou2 a permis d'identifier une expression plus élevée de sept protéines régulées par les JA ou le stress. La découverte de l'implication d'un canal dans le phénotype de fou2 renforce l'hypothèse que les flux de cations pourraient être impliqués dans les étapes précoces de la synthèse des JA. Nous avons également étudié le protéome et la physiologie d'une feuille blessée, Pour évaluer les changements d'expression protéique en réponse à la blessure et contrôlés par les JA, nous avons quantifié l'expression de 5937 protéines chez une plante d'Arabidopsis sauvage et chez un mutant incapable de synthétiser des JA. Parmi ces 5937 protéines, nous avons identifié 99 protéines régulées par la blessure chez le type sauvage. Nous avons observé pour 65% des protéines dont l'expression protéique changeait après blessure une bonne corrélation entre la quantité de transcrits et de protéines. Plusieurs enzymes de la voie des chorismates impliquées dans la biosynthèse des acides aminés phénoliques étaient induites par les JA après blessure. Une quantification des acides aminés a montré que les niveaux d'acides aminés phénoliques augmentaient significativement après blessure. La blessure induisait aussi des changements dans l'expression de protéines impliquées dans la réponse au stress et particulièrement au stress oxydatif. Nous avons quantifié l'état réduit et oxydé du glutathion, un tripeptide qui, sous sa forme réduite, est l'antioxydant majeur des cellules. Nous avons trouvé une quantité significativement plus élevée de glutathion oxydé chez le type sauvage blessé que chez la plante aus blessée. Ce résultat suggère que la génération d'un stress oxydatif et la proportion relative de glutathions réduits et oxydés sont contrôlés par les JA après blessure. Abstract : Plants possess a family of potent fatty acid-derived wound-response and developmental regulators: the jasmonates. These compounds are derived from the tri?unsaturated fatty acid a-linolenic-acid (18:3). Addition of an oxygen molecule to 18:3 by 13-lipoxygenases (13-LOX) initiates JA biosynthesis. Actually components regulating the activation of JA biosynthesis are poorly defined. Therefore we characterized in Arabidopsis thaliana the fatty acid Qxygenation upregulated 2 (fou2) mutant, which was previously isolated in a screen for mutants with an enhanced 13-LOX activity. As a consequence of this increased 13-LOX activity, JA levels in fou2 are higher than in wild type (WT) and wounding strongly increased JA biosynthesis compared to WT. fou2 was more resistant to the fungus Botrytis cinerea and the generalist caterpillar Spodaptera littomlis, The fou2 mutant carries a missense mutation in the Two Pore Channel 1 gene (TPCJ), which encodes a vacuolar cation channel transporting probably K* into the cytosol. Patchclamp analysis of fou2 vacuolar membranes showed faster time-dependent conductivity and activation of the mutated channel at lower membrane potentials than wild-type. Proteomic analysis of fou2 leaves identified increased levels of seven biotic stress- and JA- inducible proteins. The discovery of the implication of a channel in the fou2 phenotype strenghtens the hypothesis that cation fluxes might be implicated in early steps of JA synthesis. We further concentrated on the proteome and leaf physiology in the region proximal to wounds in Arabidopsis using the WT and the aos JA-biosynthesis deficient mutant in order to find JA- induced proteins changes. We used two successive proteomic methods to assess protein changes in response to wounding Arabidopsis leaves, two dimensional electrophoresis (2DE) and linear trap quadrupole ion-trap mass spectrometry. In total 5937 proteins were quantified. We identified 99 wound-regulated proteins in the WT. Most these proteins were also wound-regulated at the transcript level showing a good correlation between transcript and protein abundance. We identified several wound-regulated enzymes involved in amino acid biosynthesis and confirmed this result by amino acid quantification. Proteins involved in stress reponses were upregulated, particularly in redox species regulation. We found a significantly higher quantity of oxidized glutathione in wounded WT relative to wounded aos leaves. This result suggests that levels of reduced glutathione are controlled by JA after wounding.
Resumo:
In sandflies, the absence of the peritrophic matrix (PM) affects the rate of blood digestion. Also, the kinetics of PM secretion varies according to species. We previously characterised PpChit1, a midgut-specific chitinase secreted in Phlebotomus papatasi (PPIS) that is involved in the maturation of the PM and showed that antibodies against PpChit1 reduce the chitinolytic activity in the midgut of several sandfly species. Here, sandflies were fed on red blood cells reconstituted with naïve or anti-PpChit1 sera and assessed for fitness parameters that included blood digestion, oviposition onset, number of eggs laid, egg bouts, average number of eggs per bout and survival. In PPIS, anti-PpChit1 led to a one-day delay in the onset of egg laying, with flies surviving three days longer compared to the control group. Anti-PpChit1 also had a negative effect on overall ability of flies to lay eggs, as several gravid females from all three species were unable to lay any eggs despite having lived longer than control flies. Whereas the longer survival might be associated with improved haeme scavenging ability by the PM, the inability of females to lay eggs is possibly linked to changes in PM permeability affecting nutrient absorption.
Resumo:
Connexins are transmembrane proteins that form gap junction- and hemi-channels. Once inserted into the membrane, hemi-channels (connexons) allow for diffusion of ions and small molecules (<1kDa) between the extracellular space and the cytosol. Gap junction channels allow diffusion of similar molecules between the cytoplasms of adjacent cells. The expression and function of connexins in blood vessels has been intensely studied in the last few decades. In contrast, only a few studies paid attention to lymphatic vessels; convincing in vivo data with respect to expression patterns of lymphatic connexins and their functional roles have only recently begun to emerge. Interestingly, mutations in connexin genes have been linked to diseases of lymphatic vasculature, most notably primary and secondary lymphedema. This review summarizes the available data regarding lymphatic connexins. More specifically it addresses (i) early studies aimed at presence of gap junction-like structures in lymphatic vessels, (ii) more recent studies focusing on lymphatic connexins using genetically engineered mice, and (iii) results of clinical studies that have reported lymphedema-linked mutations in connexin genes.