967 resultados para Convex piecewise-linear costs
Resumo:
Les systèmes de communication optique avec des formats de modulation avancés sont actuellement l’un des sujets de recherche les plus importants dans le domaine de communication optique. Cette recherche est stimulée par les exigences pour des débits de transmission de donnée plus élevés. Dans cette thèse, on examinera les techniques efficaces pour la modulation avancée avec une détection cohérente, et multiplexage par répartition en fréquence orthogonale (OFDM) et multiples tonalités discrètes (DMT) pour la détection directe et la détection cohérente afin d’améliorer la performance de réseaux optiques. Dans la première partie, nous examinons la rétropropagation avec filtre numérique (DFBP) comme une simple technique d’atténuation de nonlinéarité d’amplificateur optique semiconducteur (SOA) dans le système de détection cohérente. Pour la première fois, nous démontrons expérimentalement l’efficacité de DFBP pour compenser les nonlinéarités générées par SOA dans un système de détection cohérente porteur unique 16-QAM. Nous comparons la performance de DFBP avec la méthode de Runge-Kutta quatrième ordre. Nous examinons la sensibilité de performance de DFBP par rapport à ses paramètres. Par la suite, nous proposons une nouvelle méthode d’estimation de paramètre pour DFBP. Finalement, nous démontrons la transmission de signaux de 16-QAM aux taux de 22 Gbaud sur 80km de fibre optique avec la technique d’estimation de paramètre proposée pour DFBP. Dans la deuxième partie, nous nous concentrons sur les techniques afin d’améliorer la performance des systèmes OFDM optiques en examinent OFDM optiques cohérente (CO-OFDM) ainsi que OFDM optiques détection directe (DDO-OFDM). Premièrement, nous proposons une combinaison de coupure et prédistorsion pour compenser les distorsions nonlinéaires d’émetteur de CO-OFDM. Nous utilisons une interpolation linéaire par morceaux (PLI) pour charactériser la nonlinéarité d’émetteur. Dans l’émetteur nous utilisons l’inverse de l’estimation de PLI pour compenser les nonlinéarités induites à l’émetteur de CO-OFDM. Deuxièmement, nous concevons des constellations irrégulières optimisées pour les systèmes DDO-OFDM courte distance en considérant deux modèles de bruit de canal. Nous démontrons expérimentalement 100Gb/s+ OFDM/DMT avec la détection directe en utilisant les constellations QAM optimisées. Dans la troisième partie, nous proposons une architecture réseaux optiques passifs (PON) avec DDO-OFDM pour la liaison descendante et CO-OFDM pour la liaison montante. Nous examinons deux scénarios pour l’allocations de fréquence et le format de modulation des signaux. Nous identifions la détérioration limitante principale du PON bidirectionnelle et offrons des solutions pour minimiser ses effets.
Resumo:
The quotient of a finite-dimensional Euclidean space by a finite linear group inherits different structures from the initial space, e.g. a topology, a metric and a piecewise linear structure. The question when such a quotient is a manifold leads to the study of finite groups generated by reflections and rotations, i.e. by orthogonal transformations whose fixed point subspace has codimension one or two. We classify such groups and thereby complete earlier results by M. A. Mikhaîlova from the 70s and 80s. Moreover, we show that a finite group is generated by reflections and) rotations if and only if the corresponding quotient is a Lipschitz-, or equivalently, a piecewise linear manifold (with boundary). For the proof of this statement we show in addition that each piecewise linear manifold of dimension up to four on which a finite group acts by piecewise linear homeomorphisms admits a compatible smooth structure with respect to which the group acts smoothly. This solves a challenge by Thurston and confirms a conjecture by Kwasik and Lee. In the topological category a counterexample to the above mentioned characterization is given by the binary icosahedral group. We show that this is the only counterexample up to products. In particular, we answer the question by Davis of when the underlying space of an orbifold is a topological manifold. As a corollary of our results we generalize a fixed point theorem by Steinberg on unitary reflection groups to finite groups generated by reflections and rotations. As an application thereof we answer a question by Petrunin on quotients of spheres.
Resumo:
Este proyecto de investigación es un estudio de factibilidad de importación del calzado para dama desde China para la empresa colombiana Kenzo Jeans a través del cual se evalúan a profundidad estrategias en producto, precio y distribución para que la empresa valore la conveniencia del proceso. El objetivo de esta investigación es generar herramientas y estrategias necesarias para que la empresa logre tener una visión más completa al importar calzado desde China para la distribución en el mercado colombiano. Este estudio se realizó con el fin de brindar información para que la gerencia pueda tomar decisiones correctas, eliminando el desconocimiento que pueda generar mayor incertidumbre al involucrarse en un proceso de importación. Para llevar a cabo este proceso se determinaron unos criterios de evaluación y selección mínimos respecto al diseño del producto, precio, calidad, número de unidades mínimas para realizar el pedido, empaque y etiquetado con el que debían contar los posibles proveedores en China. Esto se realizó a través de un acercamiento a los potenciales proveedores y permitió filtrar a aquellos que podrían cumplir con los criterios exigidos por Kenzo Jeans. Una vez realizado el proceso de clasificación y selección se logró determinar que existe potencial en la importación de calzado de dama desde China. Hecho este proceso se sugiere a Kenzo Jeans realizar contacto directo con estas empresas a través de un posible viaje de negocios.
Resumo:
Associative memory networks such as Radial Basis Functions, Neurofuzzy and Fuzzy Logic used for modelling nonlinear processes suffer from the curse of dimensionality (COD), in that as the input dimension increases the parameterization, computation cost, training data requirements, etc. increase exponentially. Here a new algorithm is introduced for the construction of a Delaunay input space partitioned optimal piecewise locally linear models to overcome the COD as well as generate locally linear models directly amenable to linear control and estimation algorithms. The training of the model is configured as a new mixture of experts network with a new fast decision rule derived using convex set theory. A very fast simulated reannealing (VFSR) algorithm is utilized to search a global optimal solution of the Delaunay input space partition. A benchmark non-linear time series is used to demonstrate the new approach.
Resumo:
In this paper, we consider non-linear transceiver designs for multiuser multi-input multi-output (MIMO) down-link in the presence of imperfections in the channel state information at the transmitter (CSIT). The base station (BS) is equipped with multiple transmit antennas and each user terminal is equipped with multiple receive antennas. The BS employs Tomlinson-Harashima precoding (THP) for inter-user interference pre-cancellation at the transmitter. We investigate robust THP transceiver designs based on the minimization of BS transmit power with mean square error (MSE) constraints, and balancing of MSE among users with a constraint on the total BS transmit power. We show that these design problems can be solved by iterative algorithms, wherein each iteration involves a pair of convex optimization problems. The robustness of the proposed algorithms to imperfections in CSIT is illustrated through simulations.
Resumo:
We revisit a problem studied by Padakandla and Sundaresan SIAM J. Optim., August 2009] on the minimization of a separable convex function subject to linear ascending constraints. The problem arises as the core optimization in several resource allocation problems in wireless communication settings. It is also a special case of an optimization of a separable convex function over the bases of a specially structured polymatroid. We give an alternative proof of the correctness of the algorithm of Padakandla and Sundaresan. In the process we relax some of their restrictions placed on the objective function.
Resumo:
According to the Mickael's selection theorem any surjective continuous linear operator from one Fr\'echet space onto another has a continuous (not necessarily linear) right inverse. Using this theorem Herzog and Lemmert proved that if $E$ is a Fr\'echet space and $T:E\to E$ is a continuous linear operator such that the Cauchy problem $\dot x=Tx$, $x(0)=x_0$ is solvable in $[0,1]$ for any $x_0\in E$, then for any $f\in C([0,1],E)$, there exists a continuos map $S:[0,1]\times E\to E$, $(t,x)\mapsto S_tx$ such that for any $x_0\in E$, the function $x(t)=S_tx_0$ is a solution of the Cauchy problem $\dot x(t)=Tx(t)+f(t)$, $x(0)=x_0$ (they call $S$ a fundamental system of solutions of the equation $\dot x=Tx+f$). We prove the same theorem, replacing "continuous" by "sequentially continuous" for locally convex spaces from a class which contains strict inductive limits of Fr\'echet spaces and strong duals of Fr\'echet--Schwarz spaces and is closed with respect to finite products and sequentially closed subspaces. The key-point of the proof is an extension of the theorem on existence of a sequentially continuous right inverse of any surjective sequentially continuous linear operator to some class of non-metrizable locally convex spaces.
Resumo:
Let $\Gamma$ be the class of sequentially complete locally convex spaces such that an existence theorem holds for the linear Cauchy problem $\dot x = Ax$, $x(0) = x_0$ with respect to functions $x: R\to E$. It is proved that if $E\in \Gamma$, then $E\times R^A$ is-an-element-of $\Gamma$ for an arbitrary set $A$. It is also proved that a topological product of infinitely many infinite-dimensional Frechet spaces, each not isomorphic to $\omega$, does not belong to $\Gamma$.
Resumo:
Aitchison and Bacon-Shone (1999) considered convex linear combinations of compositions. In other words, they investigated compositions of compositions, where the mixing composition follows a logistic Normal distribution (or a perturbation process) and the compositions being mixed follow a logistic Normal distribution. In this paper, I investigate the extension to situations where the mixing composition varies with a number of dimensions. Examples would be where the mixing proportions vary with time or distance or a combination of the two. Practical situations include a river where the mixing proportions vary along the river, or across a lake and possibly with a time trend. This is illustrated with a dataset similar to that used in the Aitchison and Bacon-Shone paper, which looked at how pollution in a loch depended on the pollution in the three rivers that feed the loch. Here, I explicitly model the variation in the linear combination across the loch, assuming that the mean of the logistic Normal distribution depends on the river flows and relative distance from the source origins
Resumo:
The paper proposes a method of performing system identification of a linear system in the presence of bounded disturbances. The disturbances may be piecewise parabolic or periodic functions. The method is demonstrated effectively on two example systems with a range of disturbances.