982 resultados para Continuum Model
Resumo:
Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2010
Resumo:
A mathematical model describing the uptake of low density lipoprotein (LDL) and very low density lipoprotein (VLDL) particles by a single hepatocyte cell is formulated and solved. The model includes a description of the dynamic change in receptor density on the surface of the cell due to the binding and dissociation of the lipoprotein particles, the subsequent internalisation of bound particles, receptors and unbound receptors, the recycling of receptors to the cell surface, cholesterol dependent de novo receptor formation by the cell and the effect that particle uptake has on the cell's overall cholesterol content. The effect that blocking access to LDL receptors by VLDL, or internalisation of VLDL particles containing different amounts of apolipoprotein E (we will refer to these particles as VLDL-2 and VLDL-3) has on LDL uptake is explored. By comparison with experimental data we find that measures of cell cholesterol content are important in differentiating between the mechanisms by which VLDL is thought to inhibit LDL uptake. We extend our work to show that in the presence of both types of VLDL particle (VLDL-2 and VLDL-3), measuring relative LDL uptake does not allow differentiation between the results of blocking and internalisation of each VLDL particle to be made. Instead by considering the intracellular cholesterol content it is found that internalisation of VLDL-2 and VLDL-3 leads to the highest intracellular cholesterol concentration. A sensitivity analysis of the model reveals that binding, unbinding and internalisation rates, the fraction of receptors recycled and the rate at which the cholesterol dependent free receptors are created by the cell have important implications for the overall uptake dynamics of either VLDL or LDL particles and subsequent intracellular cholesterol concentration. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We develop the essential ingredients of a new, continuum and anisotropic model of sea-ice dynamics designed for eventual use in climate simulation. These ingredients are a constitutive law for sea-ice stress, relating stress to the material properties of sea ice and to internal variables describing the sea-ice state, and equations describing the evolution of these variables. The sea-ice cover is treated as a densely flawed two-dimensional continuum consisting of a uniform field of thick ice that is uniformly permeated with narrow linear regions of thinner ice called leads. Lead orientation, thickness and width distributions are described by second-rank tensor internal variables: the structure, thickness and width tensors, whose dynamics are governed by corresponding evolution equations accounting for processes such as new lead generation and rotation as the ice cover deforms. These evolution equations contain contractions of higher-order tensor expressions that require closures. We develop a sea-ice stress constitutive law that relates sea-ice stress to the structure tensor, thickness tensor and strain rate. For the special case of empty leads (containing no ice), linear closures are adopted and we present calculations for simple shear, convergence and divergence.
Resumo:
Skeletal muscle force evaluation is difficult to implement in a clinical setting. Muscle force is typically assessed through either manual muscle testing, isokinetic/isometric dynamometry, or electromyography (EMG). Manual muscle testing is a subjective evaluation of a patient’s ability to move voluntarily against gravity and to resist force applied by an examiner. Muscle testing using dynamometers adds accuracy by quantifying functional mechanical output of a limb. However, like manual muscle testing, dynamometry only provides estimates of the joint moment. EMG quantifies neuromuscular activation signals of individual muscles, and is used to infer muscle function. Despite the abundance of work performed to determine the degree to which EMG signals and muscle forces are related, the basic problem remains that EMG cannot provide a quantitative measurement of muscle force. Intramuscular pressure (IMP), the pressure applied by muscle fibers on interstitial fluid, has been considered as a correlate for muscle force. Numerous studies have shown that an approximately linear relationship exists between IMP and muscle force. A microsensor has recently been developed that is accurate, biocompatible, and appropriately sized for clinical use. While muscle force and pressure have been shown to be correlates, IMP has been shown to be non-uniform within the muscle. As it would not be practicable to experimentally evaluate how IMP is distributed, computational modeling may provide the means to fully evaluate IMP generation in muscles of various shapes and operating conditions. The work presented in this dissertation focuses on the development and validation of computational models of passive skeletal muscle and the evaluation of their performance for prediction of IMP. A transversly isotropic, hyperelastic, and nearly incompressible model will be evaluated along with a poroelastic model.
Resumo:
Modelo de daño no local definido a materiales fibrados. Este modelo se aplica al estudio de problemas típicos en la biomecánica de los tejidos blandos, como las paredes arteriales.
Resumo:
A non-local gradient-based damage formulation within a geometrically non-linear setting is presented. The hyperelastic constitutive response at local material point level is governed by a strain energy which is additively composed of an isotropic matrix and of an anisotropic fibre-reinforced material, respectively. The inelastic constitutive response is governed by a scalar [1–d]-type damage formulation, where only the anisotropic elastic part is assumed to be affected by the damage. Following the concept in Dimitrijević and Hackl [28], the local free energy function is enhanced by a gradient-term. This term essentially contains the gradient of the non-local damage variable which, itself, is introduced as an additional independent variable. In order to guarantee the equivalence between the local and non-local damage variable, a penalisation term is incorporated within the free energy function. Based on the principle of minimum total potential energy, a coupled system of Euler–Lagrange equations, i.e., the balance of linear momentum and the balance of the non-local damage field, is obtained and solved in weak form. The resulting coupled, highly non-linear system of equations is symmetric and can conveniently be solved by a standard incremental-iterative Newton–Raphson-type solution scheme. Several three-dimensional displacement- and force-driven boundary value problems—partially motivated by biomechanical application—highlight the mesh-objective characteristics and constitutive properties of the model and illustratively underline the capabilities of the formulation proposed
Resumo:
A non-local gradient-based damage formulation within a geometrically non-linear set- ting is presented. The hyperelastic constitutive response at local material point level is governed by a strain energy function which is additively composed by an isotropic neo-Hookean matrix and by an anisotropic fibre-reinforced material based on the model proposed by T. Gasser, R. Ogden, and G. Holzapfel.
Resumo:
Material properties of soft tissues are highly conditioned by the hierarchical structure of this kind of composites. These collagen-based tissues present a complex framework of fibres, fibrils, tropocollagen molecules and amino-acids. As the structural mechanisms that control the degradation of soft tissues are related with the behaviour of its fundamental constituents, the relationship between the molecular and intermolecular properties and the tissue behaviour needs to be studied.
Resumo:
Material properties of soft fibrous tissues are highly conditioned by the hierarchical structure of this kind of composites. Collagen based tissues present, at decreasing length scales, a complex framework of fibres, fibrils, tropocollagen molecules and amino-acids. Understanding the mechanical behaviour at nano-scale level is critical to accurately incorporate this structural information in phenomenological damage models. In this work we derive a relationship between the mechanical and geometrical properties of the fibril constituents and the soft tissue material parameters at macroscopic scale. A Hodge–Petruska two-dimensional model has been used to describe the fibrils as staggered arrays of tropocollagen molecules. After a mechanical characterisation of each of the fibril components, two fibril failures modes have been defined related with two planes of weakness. A phenomenological continuous damage model with regularised softening was presented along with meso-structurally based definitions for its material parameters. Finally, numerical analysis at fibril, fibre and tissue levels are presented to show the capabilities of the model
Resumo:
Continuum mechanics provides a mathematical framework for modelling the physical stresses experienced by a material. Recent studies show that physical stresses play an important role in a wide variety of biological processes, including dermal wound healing, soft tissue growth and morphogenesis. Thus, continuum mechanics is a useful mathematical tool for modelling a range of biological phenomena. Unfortunately, classical continuum mechanics is of limited use in biomechanical problems. As cells refashion the �bres that make up a soft tissue, they sometimes alter the tissue's fundamental mechanical structure. Advanced mathematical techniques are needed in order to accurately describe this sort of biological `plasticity'. A number of such techniques have been proposed by previous researchers. However, models that incorporate biological plasticity tend to be very complicated. Furthermore, these models are often di�cult to apply and/or interpret, making them of limited practical use. One alternative approach is to ignore biological plasticity and use classical continuum mechanics. For example, most mechanochemical models of dermal wound healing assume that the skin behaves as a linear viscoelastic solid. Our analysis indicates that this assumption leads to physically unrealistic results. In this thesis we present a novel and practical approach to modelling biological plasticity. Our principal aim is to combine the simplicity of classical linear models with the sophistication of plasticity theory. To achieve this, we perform a careful mathematical analysis of the concept of a `zero stress state'. This leads us to a formal de�nition of strain that is appropriate for materials that undergo internal remodelling. Next, we consider the evolution of the zero stress state over time. We develop a novel theory of `morphoelasticity' that can be used to describe how the zero stress state changes in response to growth and remodelling. Importantly, our work yields an intuitive and internally consistent way of modelling anisotropic growth. Furthermore, we are able to use our theory of morphoelasticity to develop evolution equations for elastic strain. We also present some applications of our theory. For example, we show that morphoelasticity can be used to obtain a constitutive law for a Maxwell viscoelastic uid that is valid at large deformation gradients. Similarly, we analyse a morphoelastic model of the stress-dependent growth of a tumour spheroid. This work leads to the prediction that a tumour spheroid will always be in a state of radial compression and circumferential tension. Finally, we conclude by presenting a novel mechanochemical model of dermal wound healing that takes into account the plasticity of the healing skin.
Resumo:
Many physical processes exhibit fractional order behavior that varies with time or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. In this paper, we consider the time variable fractional order mobile-immobile advection-dispersion model. Numerical methods and analyses of stability and convergence for the fractional partial differential equations are quite limited and difficult to derive. This motivates us to develop efficient numerical methods as well as stability and convergence of the implicit numerical methods for the fractional order mobile immobile advection-dispersion model. In the paper, we use the Coimbra variable time fractional derivative which is more efficient from the numerical standpoint and is preferable for modeling dynamical systems. An implicit Euler approximation for the equation is proposed and then the stability of the approximation are investigated. As for the convergence of the numerical scheme we only consider a special case, i.e. the time fractional derivative is independent of time variable t. The case where the time fractional derivative depends both the time variable t and the space variable x will be considered in the future work. Finally, numerical examples are provided to show that the implicit Euler approximation is computationally efficient.
Resumo:
For the timber industry, the ability to simulate the drying of wood is invaluable for manufacturing high quality wood products. Mathematically, however, modelling the drying of a wet porous material, such as wood, is a diffcult task due to its heterogeneous and anisotropic nature, and the complex geometry of the underlying pore structure. The well{ developed macroscopic modelling approach involves writing down classical conservation equations at a length scale where physical quantities (e.g., porosity) can be interpreted as averaged values over a small volume (typically containing hundreds or thousands of pores). This averaging procedure produces balance equations that resemble those of a continuum with the exception that effective coeffcients appear in their deffnitions. Exponential integrators are numerical schemes for initial value problems involving a system of ordinary differential equations. These methods differ from popular Newton{Krylov implicit methods (i.e., those based on the backward differentiation formulae (BDF)) in that they do not require the solution of a system of nonlinear equations at each time step but rather they require computation of matrix{vector products involving the exponential of the Jacobian matrix. Although originally appearing in the 1960s, exponential integrators have recently experienced a resurgence in interest due to a greater undertaking of research in Krylov subspace methods for matrix function approximation. One of the simplest examples of an exponential integrator is the exponential Euler method (EEM), which requires, at each time step, approximation of φ(A)b, where φ(z) = (ez - 1)/z, A E Rnxn and b E Rn. For drying in porous media, the most comprehensive macroscopic formulation is TransPore [Perre and Turner, Chem. Eng. J., 86: 117-131, 2002], which features three coupled, nonlinear partial differential equations. The focus of the first part of this thesis is the use of the exponential Euler method (EEM) for performing the time integration of the macroscopic set of equations featured in TransPore. In particular, a new variable{ stepsize algorithm for EEM is presented within a Krylov subspace framework, which allows control of the error during the integration process. The performance of the new algorithm highlights the great potential of exponential integrators not only for drying applications but across all disciplines of transport phenomena. For example, when applied to well{ known benchmark problems involving single{phase liquid ow in heterogeneous soils, the proposed algorithm requires half the number of function evaluations than that required for an equivalent (sophisticated) Newton{Krylov BDF implementation. Furthermore for all drying configurations tested, the new algorithm always produces, in less computational time, a solution of higher accuracy than the existing backward Euler module featured in TransPore. Some new results relating to Krylov subspace approximation of '(A)b are also developed in this thesis. Most notably, an alternative derivation of the approximation error estimate of Hochbruck, Lubich and Selhofer [SIAM J. Sci. Comput., 19(5): 1552{1574, 1998] is provided, which reveals why it performs well in the error control procedure. Two of the main drawbacks of the macroscopic approach outlined above include the effective coefficients must be supplied to the model, and it fails for some drying configurations, where typical dual{scale mechanisms occur. In the second part of this thesis, a new dual{scale approach for simulating wood drying is proposed that couples the porous medium (macroscale) with the underlying pore structure (microscale). The proposed model is applied to the convective drying of softwood at low temperatures and is valid in the so{called hygroscopic range, where hygroscopically held liquid water is present in the solid phase and water exits only as vapour in the pores. Coupling between scales is achieved by imposing the macroscopic gradient on the microscopic field using suitably defined periodic boundary conditions, which allows the macroscopic ux to be defined as an average of the microscopic ux over the unit cell. This formulation provides a first step for moving from the macroscopic formulation featured in TransPore to a comprehensive dual{scale formulation capable of addressing any drying configuration. Simulation results reported for a sample of spruce highlight the potential and flexibility of the new dual{scale approach. In particular, for a given unit cell configuration it is not necessary to supply the effective coefficients prior to each simulation.