985 resultados para Connective tissue core
Resumo:
Bioactive glasses are surface-active ceramic materials which support and accelerate bone growth in the body. During the healing of a bone fracture or a large bone defect, fixation is often needed. The aim of this thesis was to determine the dissolution behaviour and biocompatibility of a composite consisting of poly(ε-caprolactone-co-DL-lactide) and bioactive glass (S53P4). In addition the applicability as an injectable material straight to a bone defect was assessed. In in vitro tests the dissolution behaviour of plain copolymer and composites containing bioactive glass granules was evaluated, as well as surface reactivity and the material’s capability to form apatite in simulated body fluid (SBF). The human fibroblast proliferation was tested on materials in cell culture. In in vivo experiments, toxicological tests, material degradation and tissue reactions were tested both in subcutaneous space and in experimental bone defects. The composites containing bioactive glass formed a unified layer of apatite on their surface in SBF. The size and amount of glass granules affected the degradation of polymer matrix, as well the material’s surface reactivity. In cell culture on the test materials the human gingival fibroblasts proliferated and matured faster compared with control materials. In in vitro tests a connective tissue capsule was formed around the specimens, and became thinner in the course of time. Foreign body cell reactions in toxicological tests were mild. In experimental bone defects the specimens with a high concentration of small bioactive glass granules (<45 μm) formed a dense apatite surface layer that restricted the bone ingrowth to material. The range of large glass granules (90-315 μm) with high concentrations formed the best bonding with bone, but slow degradation on the copolymer restricted the bone growth only in the superficial layers. In these studies, the handling properties of the material proved to be good and tissue reactions were mild. The reactivity of bioactive glass was retained inside the copolymer matrix, thus enabling bone conductivity with composites. However, the copolymer was noticed to degradate too slowly compared with the bone healing. Therefore, the porosity of the material should be increased in order to improve tissue healing.
Resumo:
The aortic-pulmonary regions (APR) of seven adult marmosets (Callithrix jacchus) and the region of the right subclavian artery of a further three marmosets were diffusion-fixed with 10% buffered formol-saline solution. In both regions serial 5-µm sections were cut and stained by the Martius yellow, brilliant crystal scarlet and soluble blue method. Presumptive thoracic paraganglionic (PTP) tissue was only observed in the APR. PTP tissue was composed of small groups of cells that varied in size and number. The distribution of the groups of cells was extremely variable, so much so that it would be misleading to attempt to classify their position; they were not circumscribed by a connective tissue capsule, but were always related to the thoracic branches of the left vagus nerve. The cells lay in loose areolar tissue characteristic of this part of the mediastinum and received their blood supply from small adjacent connective tissue arterioles. Unlike the paraganglionic tissue found in the carotid body the cells in the thorax did not appear to have a profuse capillary blood supply. There was, however, a close cellular-neural relationship. The cells, 10-15 µm in diameter, were oval or rounded in appearance and possessed a central nucleus and clear cytoplasm. No evidence was found that these cells possessed a 'companion' cell reminiscent of the arrangement of type 1 and type 2 cells in the carotid body. In conclusion, we found evidence of presumed paraganglionic tissue in the APR of the marmoset which, however, did not show the characteristic histological features of the aortic body chemoreceptors that have been described in some non-primate mammals. A survey of the mediastina of other non-human primates is required to establish whether this finding is atypical for these animals.
Resumo:
Emergent molecular measurement methods, such as DNA microarray, qRTPCR, and many others, offer tremendous promise for the personalized treatment of cancer. These technologies measure the amount of specific proteins, RNA, DNA or other molecular targets from tumor specimens with the goal of “fingerprinting” individual cancers. Tumor specimens are heterogeneous; an individual specimen typically contains unknown amounts of multiple tissues types. Thus, the measured molecular concentrations result from an unknown mixture of tissue types, and must be normalized to account for the composition of the mixture. For example, a breast tumor biopsy may contain normal, dysplastic and cancerous epithelial cells, as well as stromal components (fatty and connective tissue) and blood and lymphatic vessels. Our diagnostic interest focuses solely on the dysplastic and cancerous epithelial cells. The remaining tissue components serve to “contaminate” the signal of interest. The proportion of each of the tissue components changes as a function of patient characteristics (e.g., age), and varies spatially across the tumor region. Because each of the tissue components produces a different molecular signature, and the amount of each tissue type is specimen dependent, we must estimate the tissue composition of the specimen, and adjust the molecular signal for this composition. Using the idea of a chemical mass balance, we consider the total measured concentrations to be a weighted sum of the individual tissue signatures, where weights are determined by the relative amounts of the different tissue types. We develop a compositional source apportionment model to estimate the relative amounts of tissue components in a tumor specimen. We then use these estimates to infer the tissuespecific concentrations of key molecular targets for sub-typing individual tumors. We anticipate these specific measurements will greatly improve our ability to discriminate between different classes of tumors, and allow more precise matching of each patient to the appropriate treatment
Resumo:
Antecedentes: El interés en las enfermedades autoinmunes (EA) y su desenlace en la unidad de cuidado intensivo (UCI) han incrementado debido al reto clínico que suponen para el diagnóstico y manejo, debido a que la mortalidad en UCI fluctúa entre el 17 – 55 %. El siguiente trabajo representa la experiencia de un año de nuestro grupo en un hospital de tercer nivel. Objetivo: Identificar factores asociados a mortalidad particulares de los pacientes con enfermedades autoinmunes que ingresan a una UCI, de un hospital de tercer nivel en Bogotá, Colombia. Métodos: El uso de análisis de componentes principales basado en el método descriptivo multivariado y análisis de múltiple correspondencia fue realizado para agrupar varias variables relacionadas con asociación significativa y contexto clínico común. Resultados: Cincuenta pacientes adultos con EA con una edad promedio de 46,7 ± 17,55 años fueron evaluados. Los dos diagnósticos más comunes fueron lupus eritematoso sistémico y esclerosis sistémica, con una frecuencia de 45% y 20% de los pacientes respectivamente. La principal causa de admisión en la UCI fue la infección seguido de actividad aguda de la EA, 36% y 24% respectivamente. La mortalidad durante la estancia en UCI fue del 24%. El tiempo de hospitalización antes de la admisión a la UCI, el choque, soporte vasopresor, ventilación mecánica, sepsis abdominal, Glasgow bajo y plasmaféresis fueron factores asociados con mortalidad. Dos fenotipos de variables fueron definidos relacionadas con tiempo en la UCI y medidas de soporte en UCI, las cuales fueron asociadas supervivencia y mortalidad. Conclusiones: La identificación de factores individuales y grupos de factores por medio del análisis de componentes principales permitirá la implementación de medidas terapéutica de manera temprana y agresiva en pacientes con EA en la UCI para evitar desenlaces fatales.
Resumo:
Background: the purpose of this study was to histomorphometrically evaluate the response of periodontal tissues covering Class V resin restorations in dogs.Methods: After raising a mucoperiosteal flap, bony defects measuring 5 x 5 mm were created on the buccal aspect of the canines of five dogs followed by cavity preparations on the root surface measuring 3 x 3 x 1 mm. Before repositioning the flap to cover the bone defect, the cavities were restored with composite resin (CR) or resin-modified glass ionomer cement (RMGIC) or were left unrestored as control (C). The dogs were euthanized 90 days after surgery. Specimens comprising the tooth and periodontal tissues were removed, processed routinely, cut into longitudinal serial sections in the bucco-lingual direction, and stained with hematoxylin and eosin (H&E) or Masson's trichrome. The most central sections were selected for histomorphometric analysis.Results: Histomorphometric analysis revealed apical migration of epithelial tissue onto the restorative materials (RMGIC and CR). The C group presented significantly longer connective tissue attachment (P < 0.05) than the RMGIC and CR groups and significantly higher bone regeneration (P < 0.05) compared to the RMGIC group. Histologically, the cervical third (CT) of all groups had the most marked chronic inflammatory infiltrate.Conclusions: Within the limits of this study, it can be concluded that the restorative materials used exhibit biocompatibility; however, both materials interfered with the development of new bone and the connective tissue attachment process.
Resumo:
Alendronate is a known inhibitor of root resorption and the development of alendronate paste would enhance its utilization as intracanal medication. Therefore, this study aimed to investigate the biocompatibility of experimental alendronate paste in subcutaneous tissue of rats, for utilization in teeth susceptible to root resorption. The study was conducted on 15 male rats, weighing similar to 180-200 grams. The rats' dorsal regions were submitted to one incision on the median region and, laterally to the incision, the subcutaneous tissue was raised and gently dissected for introduction of two tubes, in each rat. The tubes were sealed at one end with gutta-percha and taken as control. The tubes were filled with experimental alendronate paste. The animals were killed at 7, 15 and 45 days after surgery and the specimens were processed in laboratory. The histological sections were stained with hematoxylin-eosin and analyzed by light microscopy. Scores were assigned to the in. ammatory process and statistically compared by the Tukey test (P < 0.05). Alendronate paste promoted severe inflammation process at 7 days, with statistically significant difference compared to the control (P < 0.05%). However, at 15 days, there was a regression of in. ammation and the presence of connective tissue with collagen fibers, fibroblasts and blood vessels was observed. After 45 days, it was observed the presence of well-organized connective tissue, with collagen fibers and fibroblasts, and few in. ammatory cells. No statistical difference was observed between the control and experimental paste at 15 and 45 days. The experimental alendronate paste was considered biocompatible with subcutaneous tissue of rat.
Resumo:
Background: Very limited information is available from in vivo studies about whether smoking and/or nicotine affect gingival tissues in the absence of plaque. The purpose of this study is to evaluate the effect of the systemic administration of nicotine in the proliferation and counting of fibroblast-like cells in the gingival tissue of rats.Methods: Thirty adult male Wistar rats were randomly assigned into two groups to receive subcutaneous injections of a saline solution (control group = group C) or nicotine solution (group N; 3 mg/kg) twice a day. The animals were euthanized 37, 44, or 51 days after the first subcutaneous injection. Specimens were routinely processed for serial histologic sections. Five fields of view in the connective tissue adjacent to the gingival epithelium and above the alveolar bone crest of the maxillary first molar were selected for the counting of fibroblast-like cells. Data were statistically analyzed (P<0.05).Results: The intergroup analysis detected a lower number of fibroblast-like cells in group N compared to group C on days 37 (2.65 +/- 1.41 and 6.67 +/- 3.25, respectively), 44 (2.70 +/- 1.84 and 8.57 +/- 2.37, respectively), and 51(2.09 +/- 1.41 and 7.49 +/- 2.60, respectively) (P<0.05). The quantification of fibroblast-like cells showed no significant difference (P >0.05) in the intragroup analysis of control and nicotine throughout experimental periods. In the intergroup analysis, group N had reduced proliferating cell nuclear antigen positive fibroblasts compared to group C in all periods (P<0.05).Conclusion: The daily systemic administration of nicotine negatively affected, in vivo, the number and proliferation of fibroblast-like cells in the gingival tissue of rats. J Periodontol 2011;82:1206-1211.
Resumo:
The aim of this study was to evaluate the rat subcutaneous tissue reaction to implanted polyethylene tubes filled with mineral trioxide aggregate (MTA) FILLAPEX (R) compared to the reaction to tubes filled with Sealapex (R) or Angelus MTA (R). These materials were placed in polyethylene tubes and implanted into the dorsal connective tissue of Wistar rats for 7, 15, 30, 60, and 90 days. The specimens were stained with hematoxylin and eosin or Von Kossa or left unstained for examination under polarized light. Qualitative and quantitative evaluations of the reaction were performed. All materials caused moderate reactions after 7 days, which decreased with time. The reactions were moderate and similar to that evoked by the control and Sealapex (R) on the 15th day. MTA FILLAPEX (R) and Angelus MTA caused mild reactions beginning after 15 days. Mineralization and granulation birefringent to polarized light were observed with all materials. It was concluded that MTA FILLAPEX (R) was biocompatible and stimulated mineralization.
Resumo:
Introduction: The endodontic regenerative procedure (ERP), which is an alternative to calcium hydroxide induced apexification, involves the use of a triple antibiotic paste (TAP) as a dressing material. The aim of this study was to evaluate the response of rat subcutaneous tissue to implanted polyethylene tubes that were filled with TAP or calcium hydroxide. Methods: Thirty rats received 2 individual implants of polyethylene tubes filled with TAP or calcium hydroxide paste (CHP) and another empty tube as a control. Thirty additional rats received 2 individual implants consisting of polyethylene tubes filled with dressing material carriers (macrogol and propylene glycol) and a sham procedure. After 7, 15, 30, 60, and 90 days, 12 animals were euthanized, and the tubes and surrounding tissue were removed and processed for histology by using glycol methacrylate and stained with hematoxylin and eosin. The histological score ranged from 0 to 3 depending on the content of inflammatory cells; the fibrous capsule was considered thin or thick, and necrosis and calcification were recorded as present or absent. The results were analyzed using the Kruskal-Wallis test. Results: Both dressing materials induced moderate reactions at 7 and 15 days. These reactions were similar to the control (P>.05) and reduced in intensity (to mild) from day 30 onward (P>.05). The carriers did not interfere with the reaction of the dressing materials. Conclusions: TAP and CHP were biocompatible over the different experimental periods examined. (J Endod 2012;38:91-94)
Resumo:
Introduction: A new cement (CER; Cimento Endodontico Rapido or fast endodontic cement) has been developed to improve handling properties. It is a formulation that has Portland cement in gel. However, there had not yet been any study evaluating its biologic properties. The purpose of this study was to evaluate the rat subcutaneous tissue response to CER and Angelus MTA. Methods: The materials were placed in polyethylene tubes and implanted into dorsal connective tissue of Wistar rats for 7, 30, and 60 days. The specimens were prepared to be stained with hematoxylin-eosin or von Kossa or not stained for polarized light. The presence of inflammation, predominant cell type, calcification, and thickness of fibrous connective tissue were recorded. Scores were defined as follows: 0, none or few inflammatory cells, no reaction; 1, <25 cells, mild reaction; 2, 25-125 cells, moderate reaction; 3, >125 cells, severe reaction. Fibrous capsule was categorized as thin when thickness was <150 mu m and thick at >150 mu m. Necrosis and formation of calcification were both recorded. Results: Both materials Angelus MTA and CER caused moderate reactions at 7 days, which decreased with time. The response was similar to the control at 30 and 60 days with Angelus MTA and CER, characterized by organized connective tissue and presence of some chronic inflammatory cells. Mineralization and granulations birefringent to polarized light were observed with both materials. Conclusions: It was possible to conclude that CER was biocompatible and stimulated mineralization. (J Endod 2009,35:1377-1380)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Low-level laser therapy (LLLT) accelerates tissue repair. Mast cells induce the proliferation of fibroblasts and the development of local fibrosis. The objective of this study was to quantify fibrosis rate and mast cells in connective tissue after endodontic sealer zinc oxide and eugenol (ZOE) was implanted and submitted to LLLT, immediately after implant and again 24 h later. Sixty mice were distributed into three groups: GI, GII, and GIII (n = 20). In GI, the tubes filled with Endofill were implanted in the animals and were not irradiated with LLLT. In GII, the tubes containing Endofill were implanted in the animals and then irradiated with red LLLT (InGaAIP) 685-nm wavelength, D=72 J/Cm(2), E = 2 J, T=58 s, P=35 mW, and in GIII, the tubes with Endofill were implanted and irradiated with infrared LLLT (AsGaAl) 830-nm wavelength, D=70 J/Cm(2), E = 2 J, T=40 s, P=50 mW. After 7 days and 30 days, the animals were killed. A series of 6-mu m-thick sections were obtained and stained with Toluidine Blue and Picrosirius and analyzed under a standard light microscope using a polarized light filter for the quantification of fibrosis. The statistics were qualitative and quantitative with a significance of 5%. The irradiation with LLLT did not offer improvement in the fibrosis rate, however, it provided a significant decrease in the concentration of independent mast cells for the period studied.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Created periodontal defects in dogs were randomly assigned for experimental (Guidor bioresorbable membranes) or control (conventional therapy) treatment the results showed that the new connective issue attachment was significantly greater in test sites than in controls. This new attachment averaged 2.79 +/- 0.74 mm and 1.47 +/- 0.20 mm at test and control sites, respectively (P < 0.05). Epithelial downgrowth was also reduced in the test sites (P < 0.05). No differences in bone response were found. The bioresorbable barrier was effective in blocking gingival epithelial downgrowth and connective tissue proliferation, promoting new attachment according to the principles of guided tissue regeneration.
Resumo:
Structurally the boundary tissue of the vampire bat seminiferous tubuli showed 2 to 5 layers of connective tissue in which elongated contractile cells and lamellar and/or fibrillar collagen were noticed. This boundary tissue forms the seminiferous tubular lamina propria. Its structure was more complex around the seminiferous tubuli near the Capsula testicularis than between the adjacent and contiguous tubuli into the testicular lobuli. The whole ultrastructural organization of the seminiferous lamina propria was described here.