675 resultados para Congestion
Resumo:
Traffic oscillations are typical features of congested traffic flow that are characterized by recurring decelerations followed by accelerations (stop-and-go driving). The negative environmental impacts of these oscillations are widely accepted, but their impact on traffic safety has been debated. This paper describes the impact of freeway traffic oscillations on traffic safety. This study employs a matched case-control design using high-resolution traffic and crash data from a freeway segment. Traffic conditions prior to each crash were taken as cases, while traffic conditions during the same periods on days without crashes were taken as controls. These were also matched by presence of congestion, geometry and weather. A total of 82 cases and about 80,000 candidate controls were extracted from more than three years of data from 2004 to 2007. Conditional logistic regression models were developed based on the case-control samples. To verify consistency in the results, 20 different sets of controls were randomly extracted from the candidate pool for varying control-case ratios. The results reveal that the standard deviation of speed (thus, oscillations) is a significant variable, with an average odds ratio of about 1.08. This implies that the likelihood of a (rear-end) crash increases by about 8% with an additional unit increase in the standard deviation of speed. The average traffic states prior to crashes were less significant than the speed variations in congestion.
Resumo:
Traffic oscillations are typical features of congested traffic flow that are characterized by recurring decelerations followed by accelerations. However, people have limited knowledge on this complex topic. In this research, 1) the impact of traffic oscillations on freeway crash occurrences has been measured using the matched case-control design. The results consistently reveal that oscillations have a more significant impact on freeway safety than the average traffic states. 2) Wavelet Transform has been adopted to locate oscillations' origins and measure their characteristics along their propagation paths using vehicle trajectory data. 3) Lane changing maneuver's impact on the immediate follower is measured and modeled. The knowledge and the new models generated from this study could provide better understanding on fundamentals of congested traffic; enable improvements to existing traffic control strategies and freeway crash countermeasures; and instigate people to develop new operational strategies with the objective of reducing the negative effects of oscillatory driving.
Resumo:
A model to predict the buildup of mainly traffic-generated volatile organic compounds or VOCs (toluene, ethylbenzene, ortho-xylene, meta-xylene, and para-xylene) on urban road surfaces is presented. The model required three traffic parameters, namely average daily traffic (ADT), volume to capacity ratio (V/C), and surface texture depth (STD), and two chemical parameters, namely total suspended solid (TSS) and total organic carbon (TOC), as predictor variables. Principal component analysis and two phase factor analysis were performed to characterize the model calibration parameters. Traffic congestion was found to be the underlying cause of traffic-related VOC buildup on urban roads. The model calibration was optimized using orthogonal experimental design. Partial least squares regression was used for model prediction. It was found that a better optimized orthogonal design could be achieved by including the latent factors of the data matrix into the design. The model performed fairly accurately for three different land uses as well as five different particle size fractions. The relative prediction errors were 10–40% for the different size fractions and 28–40% for the different land uses while the coefficients of variation of the predicted intersite VOC concentrations were in the range of 25–45% for the different size fractions. Considering the sizes of the data matrices, these coefficients of variation were within the acceptable interlaboratory range for analytes at ppb concentration levels.
Resumo:
Any incident on motorways potentially can be followed by secondary crashes. Rear-end crashes also could happen as a result of queue formation downstream of high speed platoons. To decrease the occurrence of secondary crashes and rear-end crashes, Variable Speed Limits (VSL) can be applied to protect queue formed downstream. This paper focuses on fine tuning the Queue Protection algorithm of VSL. Three performance indicators: activation time, deactivation time and number of false alarms are selected to optimise the Queue Protection algorithm. A calibrated microscopic traffic simulation model of Pacific Motorway in Brisbane is used for the optimisation. Performance of VSL during an incident and heavy congestion and the benefit of VSL will be presented in the paper.
Resumo:
The paper presents a demand side response scheme,which assists electricity consumers to proactively control own demands in such a way to deliberately avert congestion periods on the electrical network. The scheme allows shifting loads from peak to low demand periods in an attempt to flattening the national electricity requirement. The scheme can be concurrently used to accommodate the utilization of renewable energy sources,that might be available at user’s premises. In addition the scheme allows a full-capacity utilization of the available electrical infrastructure by organizing a wide-use of electric vehicles. The scheme is applicable in the Eastern and Southern States of Australia managed by the Australian Energy Market Operator. The results indicate the potential of the scheme to achieve energy savings and release capacity to accommodate renewable energy and electrical vehicle technologies.
Resumo:
A letter in response to an article by David Rojas-Rueda, Audrey de Nazelle, Marko Tainio, Mark J Nieuwenhuijsen, The health risks and benefits of cycling in urban environments compared with car use: health impact assessment study. BMJ 2011;343:doi:10.1136/bmj.d4521 (Published 4 August 2011) This paper sets out to compare the health benefits of the Bicing scheme (Barcelona's public bicycle share scheme) with possible risks associated with increased bicycle riding. The key variables used by the researchers include physical activity, exposure to air pollution and road traffic injury. The authors rightly identify that although traffic congestion is often a major motivator behind the establishment of public bicycle share schemes (PBSS), the health benefits may well be the largest single benefit of such schemes. Certainly PBSS appear to be one of the most effective methods of increasing the number of bicycle trips across a population, providing additional transport options and improving awareness of the possibilities bicycles offer urban transport systems. Overall, the paper is a useful addition to the literature, in that it has attempted to assess the health benefits of a large scale PBSS and weighed these against potential risks related to cyclists exposure to air pollution and road traffic injuries. Unfortunately a fundamentally flawed assumption related to the proportion of Bicing trips replacing car journeys invalidates the results of this paper. A future paper with up to date data would create a significant contribution to this emerging area within the field of sustainable transport.
Resumo:
Variable Speed Limits (VSL) is an Intelligent Transportation Systems (ITS) control tool which can enhance traffic safety and which has the potential to contribute to traffic efficiency. Queensland's motorways experience a large volume of commuter traffic in peak periods, leading to heavy recurrent congestion and a high frequency of incidents. Consequently, Queensland's Department of Transport and Main Roads have considered deploying VSL to improve safety and efficiency. This paper identifies three types of VSL and three applicable conditions for activating VSL on for Queensland motorways: high flow, queuing and adverse weather. The design objectives and methodology for each condition are analysed, and micro-simulation results are presented to demonstrate the effectiveness of VSL.
Resumo:
Travel time is an important network performance measure and it quantifies congestion in a manner easily understood by all transport users. In urban networks, travel time estimation is challenging due to number of reasons such as, fluctuations in traffic flow due to traffic signals, significant flow to/from mid link sinks/sources, etc. The classical analytical procedure utilizes cumulative plots at upstream and downstream locations for estimating travel time between the two locations. In this paper, we discuss about the issues and challenges with classical analytical procedure such as its vulnerability to non conservation of flow between the two locations. The complexity with respect to exit movement specific travel time is discussed. Recently, we have developed a methodology utilising classical procedure to estimate average travel time and its statistic on urban links (Bhaskar, Chung et al. 2010). Where, detector, signal and probe vehicle data is fused. In this paper we extend the methodology for route travel time estimation and test its performance using simulation. The originality is defining cumulative plots for each exit turning movement utilising historical database which is self updated after each estimation. The performance is also compared with a method solely based on probe (Probe-only). The performance of the proposed methodology has been found insensitive to different route flow, with average accuracy of more than 94% given a probe per estimation interval which is more than 5% increment in accuracy with respect to Probe-only method.
Resumo:
Emergency Health Services (EHS), encompassing hospital-based Emergency Departments (ED) and pre-hospital ambulance services, are a significant and high profile component of Australia’s health care system and congestion of these, evidenced by physical overcrowding and prolonged waiting times, is causing considerable community and professional concern. This concern relates not only to Australia’s capacity to manage daily health emergencies but also the ability to respond to major incidents and disasters. EHS congestion is a result of the combined effects of increased demand for emergency care, increased complexity of acute health care, and blocked access to ongoing care (e.g. inpatient beds). Despite this conceptual understanding there is a lack of robust evidence to explain the factors driving increased demand, or how demand contributes to congestion, and therefore public policy responses have relied upon limited or unsound information. The Emergency Health Services Queensland (EHSQ) research program proposes to determine the factors influencing the growing demand for emergency health care and to establish options for alternative service provision that may safely meet patient’s needs. The EHSQ study is funded by the Australian Research Council (ARC) through its Linkage Program and is supported financially by the Queensland Ambulance Service (QAS). This monograph is part of a suite of publications based on the research findings that examines the existing literature, and current operational context. Literature was sourced using standard search approaches and a range of databases as well as a selection of articles cited in the reviewed literature. Public sources including the Australian Institute of Health and Welfare (AIHW), the Council of Ambulance Authorities (CAA) Annual Reports, Australian Bureau of Statistics (ABS) and Department of Health and Ageing (DoHA) were examined for trend data across Australia.
Resumo:
Sustainable transport has become a necessity instead of an option, to address the problems of congestion and urban sprawl, whose effects include increased trip lengths and travel time. A more sustainable form of development, known as Transit Oriented Development (TOD) is presumed to offer sustainable travel choices with reduced need to travel to access daily destinations, by providing a mixture of land uses together with good quality of public transport service, infrastructure for walking and cycling. However, performance assessment of these developments with respect to travel characteristics of their inhabitants is required. This research proposes a five step methodology for evaluating the transport impacts of TODs. The steps for TOD evaluation include pre–TOD assessment, traffic and travel data collection, determination of traffic impacts, determination of travel impacts, and drawing outcomes. Typically, TODs are comprised of various land uses; hence have various types of users. Assessment of characteristics of all user groups is essential for obtaining an accurate picture of transport impacts. A case study TOD, Kelvin Grove Urban Village (KGUV), located 2km of north west of the Brisbane central business district in Australia was selected for implementing the proposed methodology and to evaluate the transport impacts of a TOD from an Australian perspective. The outcomes of this analysis indicated that KGUV generated 27 to 48 percent less traffic compared to standard published rates specified for homogeneous uses. Further, all user groups of KGUV used more sustainable modes of transport compared to regional and similarly located suburban users, with higher trip length for shopping and education trips. Although the results from this case study development support the transport claims of reduced traffic generation and sustainable travel choices by way of TODs, further investigation is required, considering different styles, scales and locations of TODs. The proposed methodology may be further refined by using results from new TODs and a framework for TOD evaluation may be developed.
Resumo:
In public places, crowd size may be an indicator of congestion, delay, instability, or of abnormal events, such as a fight, riot or emergency. Crowd related information can also provide important business intelligence such as the distribution of people throughout spaces, throughput rates, and local densities. A major drawback of many crowd counting approaches is their reliance on large numbers of holistic features, training data requirements of hundreds or thousands of frames per camera, and that each camera must be trained separately. This makes deployment in large multi-camera environments such as shopping centres very costly and difficult. In this chapter, we present a novel scene-invariant crowd counting algorithm that uses local features to monitor crowd size. The use of local features allows the proposed algorithm to calculate local occupancy statistics, scale to conditions which are unseen in the training data, and be trained on significantly less data. Scene invariance is achieved through the use of camera calibration, allowing the system to be trained on one or more viewpoints and then deployed on any number of new cameras for testing without further training. A pre-trained system could then be used as a ‘turn-key’ solution for crowd counting across a wide range of environments, eliminating many of the costly barriers to deployment which currently exist.
Resumo:
Dhaka’s traffic is heterogeneous, both motorized (MT) and non-motorized (NMT) transport are common. Traffic congestion has become a part of city dwellers’ lives. This paper explores the factors for motor vehicle growth in Dhaka. The scope of the paper will be limited to literature review...
Resumo:
Various state and local government initiatives have been implemented to encourage Australians to ride bicycles. Decreasing the number of trips taken by motor vehicle has benefits for the both the individual and the community, including health, congestion and environmental benefits. This research examined who the new cyclists are, how much and where they ride.
Resumo:
The need to find an alternative to our current transport situation is widely accepted. In most cities of the world, traffic congestion is commonplace and air pollution is normal. Road fatalities are a regular and almost accepted event. And (in most developed nations) as an indirect consequence of our transport choices, obesity is increasing at an alarming rate. The car is undeniably a major contributor to this situation. Additionally the very structure of our cities has evolved to the point that it can be creditably claimed that the city belongs to the car and not to humans. There are however alternatives. There is a plethora of experimental vehicles in all shapes and configurations. And yet, the car is still king. The question is, how do we pick a winner? What are the aspects of the car that make it so appealing? Are these aspects able to be translated into a more sustainable version? What do we need to incorporate in our designs of new vehicles to make them more appealing to the consumers? In this paper I explore these questions and propose a list of design criteria for more sustainable transport options.
Resumo:
BACKGROUND: Emergency departments (EDs) are critical to the management of acute illness and injury, and the provision of health system access. However, EDs have become increasingly congested due to increased demand, increased complexity of care and blocked access to ongoing care (access block). Congestion has clinical and organisational implications. This paper aims to describe the factors that appear to infl uence demand for ED services, and their interrelationships as the basis for further research into the role of private hospital EDs. DATA SOURCES: Multiple databases (PubMed, ProQuest, Academic Search Elite and Science Direct) and relevant journals were searched using terms related to EDs and emergency health needs. Literature pertaining to emergency department utilisation worldwide was identified, and articles selected for further examination on the basis of their relevance and significance to ED demand. RESULTS: Factors influencing ED demand can be categorized into those describing the health needs of the patients, those predisposing a patient to seeking help, and those relating to policy factors such as provision of services and insurance status. This paper describes the factors influencing ED presentations, and proposes a novel conceptual map of their interrelationship. CONCLUSION: This review has explored the factors contributing to the growing demand for ED care, the influence these factors have on ED demand, and their interrelationships depicted in the conceptual model.