865 resultados para Concrete concepts
Resumo:
The aim of this paper is to evaluate the influence of the crushing process used to obtain recycled concrete aggregates on the performance of concrete made with those aggregates. Two crushing methods were considered: primary crushing, using a jaw crusher, and primary plus secondary crushing (PSC), using a jaw crusher followed by a hammer mill. Besides natural aggregates (NA), these two processes were also used to crush three types of concrete made in laboratory (L20, L45 e L65) and three more others from the precast industry (P20, P45 e P65). The coarse natural aggregates were totally replaced by coarse recycled concrete aggregates. The recycled aggregates concrete mixes were compared with reference concrete mixes made using only NA, and the following properties related to the mechanical and durability performance were tested: compressive strength; splitting tensile strength; modulus of elasticity; carbonation resistance; chloride penetration resistance; water absorption by capillarity; water absorption by immersion; and shrinkage. The results show that the PSC process leads to better performances, especially in the durability properties. © 2014 RILEM
Resumo:
The fractional order calculus (FOC) is as old as the integer one although up to recently its application was exclusively in mathematics. Many real systems are better described with FOC differential equations as it is a well-suited tool to analyze problems of fractal dimension, with long-term “memory” and chaotic behavior. Those characteristics have attracted the engineers' interest in the latter years, and now it is a tool used in almost every area of science. This paper introduces the fundamentals of the FOC and some applications in systems' identification, control, mechatronics, and robotics, where it is a promissory research field.
Resumo:
This text is based on a research, which is still in progress, whose main objective is to identify and understand what are the main difficulties of future mathematics teachers of basic education are, regarding their content knowledge in geometry in the context of the curricular unit of Geometry during their undergraduate degree. We chose a qualitative approach in the form of case study, in which data collection was done through observation, interviews, a diverse set of tasks, a diagnostic test and other documents. This paper focuses on the test given to prospective teachers at the beginning of the course. The preliminary analysis of the data points to a weak performance of preservice teachers in the test issues addressing elementary knowledge of Geometry
Resumo:
The Maxwell equations, expressing the fundamental laws of electricity and magnetism, only involve the integer-order calculus. However, several effects present in electromagnetism, motivated recently an analysis under the fractional calculus (FC) perspective. In fact, this mathematical concept allows a deeper insight into many phenomena that classical models overlook. On the other hand, genetic algorithms (GA) are an important tool to solve optimization problems that occur in engineering. In this work we use FC and GA to implement the electrical potential of fractional order. The performance of the GA scheme and the convergence of the resulting approximations are analyzed.
Resumo:
This text is based on a research, which is still in progress, whose main objective is to identify and understand what are the main difficulties of future mathematics teachers of basic education are, regarding their content knowledge in geometry in the context of the curricular unit of Geometry during their undergraduate degree. We chose a qualitative approach in the form of case study, in which data collection was done through observation, interviews, a diverse set of tasks, a diagnostic test and other documents. This paper focuses on the test given to prospective teachers at the beginning of the course. The preliminary analysis of the data points to a weak performance of preservice teachers in the test issues addressing elementary knowledge of Geometry.
Resumo:
It is considered that using crushed recycled concrete as aggregate for concrete production is a viable alternative to dumping and would help to conserve abiotic resources. This use has fundamentally been based on the coarse fraction because the fine fraction is likely to degrade the performance of the resulting concrete. This paper presents results from a research work undertaken at Institut Superior Tecnico (IST), Lisbon, Portugal, in which the effects of incorporating two types of superplasticizer on the mechanical performance of concrete containing fine recycled aggregate were evaluated. The purpose was to see if the addition of superplasticizer would offset the detrimental effects associated with the use of fine recycled concrete aggregate. The experimental programme is described and the results of tests for splitting tensile strength, modulus of elasticity and abrasion resistance are presented. The relative performance of concrete made with recycled aggregate was found to decrease. However, the same concrete with admixtures in general exhibited a better mechanical performance than the reference mixes without admixtures or with a less active superplasticizer. Therefore, it is argued that the mechanical performance of concrete made with fine recycled concrete aggregates can be as good as that of conventional concrete, if superplasticizers are used to reduce the water-cement ratio of the former concrete.
Resumo:
The reuse of structural concrete elements to produce new concrete aggregates is accepted as an alternative to dumping them and is favourable to the sustainability of natural reserves. Even though the construction sector is familiar with the use of coarse recycled concrete aggregates, the recycled concrete fines are classified as less noble resources. This research sets out to limit the disadvantages associated with the performance of concrete containing fine recycled concrete aggregates through the use of superplasticisers. Two types of latest generation superplasticisers were used that differ in terms of water reduction capacity and robustness, and the workability, density and compressive strength of each of the compositions analysed were then compared: a reference concrete, with no plasticisers, and concrete mixes with the superplasticisers. For each concrete family mixes with 0%, 10%, 30%, 50% and 100% replacement ratios of fine natural aggregates (FNA) by fine recycled concrete aggregates (FRA) were analysed. Concrete with incorporation of recycled aggregates was found to have poorer relative performance. The mechanical performance of concrete with recycled aggregates and superplasticisers was generally superior to that of the reference concrete with no admixtures and of conventional concrete with lower performance superplasticisers.
Resumo:
Tese de Mestrado em Engenharia Informática
Resumo:
Doutoramento em Ciências da Comunicação - Especialidade de Comunicação e Artes
Resumo:
Trabalho de projecto para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas
Resumo:
The development and applications of thermoset polymeric composites, namely fiber reinforced polymers (FRP), have shifted in the last decades more and more into the mass market [1]. Production and consume have increased tremendously mainly for the construction, transportation and automobile sectors [2, 3]. Although the many successful uses of thermoset composite materials, recycling process of byproducts and end of lifecycle products constitutes a more difficult issue. The perceived lack of recyclability of composite materials is now increasingly important and seen as a key barrier to the development or even continued used of these materials in some markets.
Resumo:
In this study, a new waste management solution for thermoset glass fibre reinforced polymer (GFRP) based products was assessed. Mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the prospective added-value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. Different GFRP waste admixed mortar formulations were analyzed varying the content, between 4% up to 12% in weight, of GFRP powder and fibre mix waste. The effect of incorporation of a silane coupling agent was also assessed. Design of experiments and data treatment was accomplished through implementation of full factorial design and analysis of variance ANOVA. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacity of GFRP waste admixed mortars with regard to unmodified polymer mortars. The key findings of this study showed a viable technological option for improving the quality of polyester based mortars and highlight a potential cost-effective waste management solution for thermoset composite materials in the production of sustainable concrete-polymer based products.
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remolded, and complex composition of the composite itself, which includes glass fibres, matrix and different types of inorganic fillers. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. There are several methods to recycle GFR thermostable materials: (a) incineration, with partial energy recovery due to the heat generated during organic part combustion; (b) thermal and/or chemical recycling, such as solvolysis, pyrolisis and similar thermal decomposition processes, with glass fibre recovering; and (c) mechanical recycling or size reduction, in which the material is subjected to a milling process in order to obtain a specific grain size that makes the material suitable as reinforcement in new formulations. This last method has important advantages over the previous ones: there is no atmospheric pollution by gas emission, a much simpler equipment is required as compared with ovens necessary for thermal recycling processes, and does not require the use of chemical solvents with subsequent environmental impacts. In this study the effect of incorporation of recycled GFRP waste materials, obtained by means of milling processes, on mechanical behavior of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste materials, with distinct size gradings, were incorporated into polyester polymer mortars as sand aggregates and filler replacements. The effect of GFRP waste treatment with silane coupling agent was also assessed. Design of experiments and data treatment were accomplish by means of factorial design and analysis of variance ANOVA. The use of factorial experiment design, instead of the one-factor-at-a-time method is efficient at allowing the evaluation of the effects and possible interactions of the different material factors involved. Experimental results were promising toward the recyclability of GFRP waste materials as aggregates and filler replacements for polymer mortar, with significant gain of mechanical properties with regard to non-modified polymer mortars.
Resumo:
In this study, the added value resultant from the incorporation of pultrusion production waste into polymer based concretes was assessed. For this purpose, different types of thermoset composite scrap material, proceeding from GFRP pultrusion manufacturing process, were mechanical shredded and milled into a fibrous-powdered material. Resultant GFRP recyclates, with two different size gradings, were added to polyester based mortars as fine aggregate and filler replacements, at various load contents between 4% up to 12% in weight of total mass. Flexural and compressive loading capacities were evaluated and found better than those of unmodified polymer mortars. Obtained results highlight the high potential of recycled GFRP pultrusion waste materials as efficient and sustainable admixtures for concrete and mortar-polymer composites, constituting an emergent waste management solution.
Resumo:
In this paper, we present two Partial Least Squares Regression (PLSR) models for compressive and flexural strength responses of a concrete composite material reinforced with pultrusion wastes. The main objective is to characterize this cost-effective waste management solution for glass fiber reinforced polymer (GFRP) pultrusion wastes and end-of-life products that will lead, thereby, to a more sustainable composite materials industry. The experiments took into account formulations with the incorporation of three different weight contents of GFRP waste materials into polyester based mortars, as sand aggregate and filler replacements, two waste particle size grades and the incorporation of silane adhesion promoter into the polyester resin matrix in order to improve binder aggregates interfaces. The regression models were achieved for these data and two latent variables were identified as suitable, with a 95% confidence level. This technological option, for improving the quality of GFRP filled polymer mortars, is viable thus opening a door to selective recycling of GFRP waste and its use in the production of concrete-polymer based products. However, further and complementary studies will be necessary to confirm the technical and economic viability of the process.