864 resultados para Computer Networks and Communications
Resumo:
We present a fully-distributed self-healing algorithm dex that maintains a constant degree expander network in a dynamic setting. To the best of our knowledge, our algorithm provides the first efficient distributed construction of expanders—whose expansion properties holddeterministically—that works even under an all-powerful adaptive adversary that controls the dynamic changes to the network (the adversary has unlimited computational power and knowledge of the entire network state, can decide which nodes join and leave and at what time, and knows the past random choices made by the algorithm). Previous distributed expander constructions typically provide only probabilistic guarantees on the network expansion whichrapidly degrade in a dynamic setting; in particular, the expansion properties can degrade even more rapidly under adversarial insertions and deletions. Our algorithm provides efficient maintenance and incurs a low overhead per insertion/deletion by an adaptive adversary: only O(logn)O(logn) rounds and O(logn)O(logn) messages are needed with high probability (n is the number of nodes currently in the network). The algorithm requires only a constant number of topology changes. Moreover, our algorithm allows for an efficient implementation and maintenance of a distributed hash table on top of dex with only a constant additional overhead. Our results are a step towards implementing efficient self-healing networks that have guaranteed properties (constant bounded degree and expansion) despite dynamic changes.
Gopal Pandurangan has been supported in part by Nanyang Technological University Grant M58110000, Singapore Ministry of Education (MOE) Academic Research Fund (AcRF) Tier 2 Grant MOE2010-T2-2-082, MOE AcRF Tier 1 Grant MOE2012-T1-001-094, and the United States-Israel Binational Science Foundation (BSF) Grant 2008348. Peter Robinson has been supported by Grant MOE2011-T2-2-042 “Fault-tolerant Communication Complexity in Wireless Networks” from the Singapore MoE AcRF-2. Work done in part while the author was at the Nanyang Technological University and at the National University of Singapore. Amitabh Trehan has been supported by the Israeli Centers of Research Excellence (I-CORE) program (Center No. 4/11). Work done in part while the author was at Hebrew University of Jerusalem and at the Technion and supported by a Technion fellowship.
Resumo:
In this paper, we introduce a statistical data-correction framework that aims at improving the DSP system performance in presence of unreliable memories. The proposed signal processing framework implements best-effort error mitigation for signals that are corrupted by defects in unreliable storage arrays using a statistical correction function extracted from the signal statistics, a data-corruption model, and an application-specific cost function. An application example to communication systems demonstrates the efficacy of the proposed approach.
Resumo:
Presents the introductory welcome message from the conference proceedings. May include the conference officers' congratulations to all involved with the conference event and publication of the proceedings record.
Resumo:
The ability to exchange keys between users is vital in any wireless based security system. A key generation technique which exploits the randomness of the wireless channel is a promising alternative to existing key distribution techniques, e.g., public key cryptography. In this paper, a secure key generation scheme based on the subcarriers' channel responses in orthogonal frequency-division multiplexing (OFDM) systems is proposed. We first implement a time-variant multipath channel with its channel impulse response modelled as a wide sense stationary (WSS) uncorrelated scattering random process and demonstrate that each subcarrier's channel response is also a WSS random process. We then define the X% coherence time as the time required to produce an X% correlation coefficient in the autocorrelation function (ACF) of each channel tap, and find that when all the channel taps have the same Doppler power spectrum, all subcarriers' channel responses has the same ACF as the channel taps. The subcarrier's channel response is then sampled every X% coherence time and quantized into key bits. All the key sequences' randomness is tested using National Institute of Standards and Technology (NIST) statistical test suite and the results indicate that the commonly used sampling interval as 50% coherence time cannot guarantee the randomness of the key sequence.
Resumo:
Structured parallel programming, and in particular programming models using the algorithmic skeleton or parallel design pattern concepts, are increasingly considered to be the only viable means of supporting effective development of scalable and efficient parallel programs. Structured parallel programming models have been assessed in a number of works in the context of performance. In this paper we consider how the use of structured parallel programming models allows knowledge of the parallel patterns present to be harnessed to address both performance and energy consumption. We consider different features of structured parallel programming that may be leveraged to impact the performance/energy trade-off and we discuss a preliminary set of experiments validating our claims.
Resumo:
In this paper we advocate the Loop-of-stencil-reduce pattern as a way to simplify the parallel programming of heterogeneous platforms (multicore+GPUs). Loop-of-Stencil-reduce is general enough to subsume map, reduce, map-reduce, stencil, stencil-reduce, and, crucially, their usage in a loop. It transparently targets (by using OpenCL) combinations of CPU cores and GPUs, and it makes it possible to simplify the deployment of a single stencil computation kernel on different GPUs. The paper discusses the implementation of Loop-of-stencil-reduce within the FastFlow parallel framework, considering a simple iterative data-parallel application as running example (Game of Life) and a highly effective parallel filter for visual data restoration to assess performance. Thanks to the high-level design of the Loop-of-stencil-reduce, it was possible to run the filter seamlessly on a multicore machine, on multi-GPUs, and on both.
Resumo:
This paper presents an easy to use methodology and system for insurance companies targeting at managing traffic accidents reports process. The main objective is to facilitate and accelerate the process of creating and finalizing the necessary accident reports in cases without mortal victims involved. The diverse entities participating in the process from the moment an accident occurs until the related final actions needed are included. Nowadays, this market is limited to the consulting platforms offered by the insurance companies. Copyright 2014 ACM.
Resumo:
In Australia, the Queensland fruit fly (B. tryoni), is the most destructive insect pest of horticulture, attacking nearly all fruit and vegetable crops. This project has researched and prototyped a system for monitoring fruit flies so that authorities can be alerted when a fly enters a crop in a more efficient manner than is currently used. This paper presents the idea of our sensor platform design as well as the fruit fly detection and recognition algorithm by using machine vision techniques. Our experiments showed that the designed trap and sensor platform is capable to capture quality fly images, the invasive flies can be successfully detected and the average precision of the Queensland fruit fly recognition is 80% from our experiment.
Resumo:
Various socio-demographic factors are causing our society to coexist every day with a group of elderly population that remains active and inserted into the daily dynamics. However, it is believed that there are certain barriers that make this group of people to not adequately address the technologies and even social networks. The creation of the University Programs for the Elderly (PUM), however, is leading to a new stage, since older people who participate come into contact with all kinds of content and rigor, updating own university education, thus changing the way to tackle the most innovative and different situations. In this study, we analyze what is the knowledge and use of older people, PUM, attending the University of Jaen have of the social networks and the assessment made of the need for these programs. To achieve this, we used a methodology in which qualitative and quantitative processes were articulated, through the analysis of data obtained from interviews and a focus groups with program Aquad 7. The data collected show that there is still some ignorance about social networks by older people, but everyone values their usefulness and necessity. Participants believe that they will be least affected of the risks of these technologies and demand a greater training in these contained within the PUM.
Resumo:
This paper focuses on active networks applications and in particular on the possible interactions among these applications. Active networking is a very promising research field which has been developed recently, and which poses several interesting challenges to network designers. A number of proposals for e±cient active network architectures are already to be found in the literature. However, how two or more active network applications may interact has not being investigated so far. In this work, we consider a number of applications that have been designed to exploit the main features of active networks and we discuss what are the main benefits that these applications may derive from them. Then, we introduce some forms of interaction including interference and communications among applications, and identify the components of an active network architecture that are needed to support these forms of interaction. We conclude by presenting a brief example of an active network application exploiting the concept of interaction.
Resumo:
In this paper we propose a nature-inspired approach that can boost the Optimum-Path Forest (OPF) clustering algorithm by optimizing its parameters in a discrete lattice. The experiments in two public datasets have shown that the proposed algorithm can achieve similar parameters' values compared to the exhaustive search. Although, the proposed technique is faster than the traditional one, being interesting for intrusion detection in large scale traffic networks. © 2012 IEEE.
Resumo:
Presenta la experiencia de la Division de Transportes y Comunicaciones en el uso de computadores para aplicaciones substantivas. Examina los sistemas aplicados - codigo de puertos, ISIS, TRANDIS, COMPA -; el uso de procesamiento de textos en la preparacion de documentos de investigacion e informes y en la correspondencia, y entrega algunas consideraciones con respecto al uso de los microcomputadores.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In recent years, Deep Learning techniques have shown to perform well on a large variety of problems both in Computer Vision and Natural Language Processing, reaching and often surpassing the state of the art on many tasks. The rise of deep learning is also revolutionizing the entire field of Machine Learning and Pattern Recognition pushing forward the concepts of automatic feature extraction and unsupervised learning in general. However, despite the strong success both in science and business, deep learning has its own limitations. It is often questioned if such techniques are only some kind of brute-force statistical approaches and if they can only work in the context of High Performance Computing with tons of data. Another important question is whether they are really biologically inspired, as claimed in certain cases, and if they can scale well in terms of "intelligence". The dissertation is focused on trying to answer these key questions in the context of Computer Vision and, in particular, Object Recognition, a task that has been heavily revolutionized by recent advances in the field. Practically speaking, these answers are based on an exhaustive comparison between two, very different, deep learning techniques on the aforementioned task: Convolutional Neural Network (CNN) and Hierarchical Temporal memory (HTM). They stand for two different approaches and points of view within the big hat of deep learning and are the best choices to understand and point out strengths and weaknesses of each of them. CNN is considered one of the most classic and powerful supervised methods used today in machine learning and pattern recognition, especially in object recognition. CNNs are well received and accepted by the scientific community and are already deployed in large corporation like Google and Facebook for solving face recognition and image auto-tagging problems. HTM, on the other hand, is known as a new emerging paradigm and a new meanly-unsupervised method, that is more biologically inspired. It tries to gain more insights from the computational neuroscience community in order to incorporate concepts like time, context and attention during the learning process which are typical of the human brain. In the end, the thesis is supposed to prove that in certain cases, with a lower quantity of data, HTM can outperform CNN.
Resumo:
A technique for systematic peptide variation by a combination of rational and evolutionary approaches is presented. The design scheme consists of five consecutive steps: (i) identification of a “seed peptide” with a desired activity, (ii) generation of variants selected from a physicochemical space around the seed peptide, (iii) synthesis and testing of this biased library, (iv) modeling of a quantitative sequence-activity relationship by an artificial neural network, and (v) de novo design by a computer-based evolutionary search in sequence space using the trained neural network as the fitness function. This strategy was successfully applied to the identification of novel peptides that fully prevent the positive chronotropic effect of anti-β1-adrenoreceptor autoantibodies from the serum of patients with dilated cardiomyopathy. The seed peptide, comprising 10 residues, was derived by epitope mapping from an extracellular loop of human β1-adrenoreceptor. A set of 90 peptides was synthesized and tested to provide training data for neural network development. De novo design revealed peptides with desired activities that do not match the seed peptide sequence. These results demonstrate that computer-based evolutionary searches can generate novel peptides with substantial biological activity.