881 resultados para Computed tomography (CT)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last few years various research groups around the world have employed X-ray Computed Tomography (CT) imaging in the study of mummies – Toronto-Boston (1,2), Manchester(3). Prior to the development of CT scanners, plane X-rays were used in the investigation of mummies. Xeroradiography has also been employed(4). In a xeroradiograph, objects of similar X-ray density (very difficult to see on a conventional X-ray) appear edge-enhanced and so are seen much more clearly. CT scanners became available in the early 1970s. A CT scanner produces cross-sectional X-rays of objects. On a conventional X-radiograph individual structures are often very difficult to see because all the structures lying in the path of the X-ray beam are superimposed, a problem that does not occur with CT. Another advantage of CT is that the information in a series of consecutive images may be combined to produce a three-dimensional reconstruction of an object. Slices of different thickness and magnification may be chosen. Why CT a mummy? Prior to the availability of CT scanners, the only way of finding out about the inside of a mummy in any detail was to unwrap and dissect it. This has been done by various research groups – most notably the Manchester, UK and Pennsylvania University, USA mummy projects(5,6). Unwrapping a mummy and carrying out an autopsy is obviously very destructive. CT studies hold the possibility of producing a lot more information than is possible from plain X-rays and are able to show the undisturbed arrangement of the wrapped body. CT is also able to provide information about the internal structure of bones, organ packs, etc that wouldn’t be possible without sawing through the bones etc. The mummy we have scanned is encased in a coffin which would have to have been broken open in order to remove the body.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pragmatic method for assessing the accuracy and precision of a given processing pipeline required for converting computed tomography (CT) image data of bones into representative three dimensional (3D) models of bone shapes is proposed. The method is based on coprocessing a control object with known geometry which enables the assessment of the quality of resulting 3D models. At three stages of the conversion process, distance measurements were obtained and statistically evaluated. For this study, 31 CT datasets were processed. The final 3D model of the control object contained an average deviation from reference values of −1.07±0.52 mm standard deviation (SD) for edge distances and −0.647±0.43 mm SD for parallel side distances of the control object. Coprocessing a reference object enables the assessment of the accuracy and precision of a given processing pipeline for creating CTbased 3D bone models and is suitable for detecting most systematic or human errors when processing a CT-scan. Typical errors have about the same size as the scan resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: To develop clinical protocols for acquiring PET images, performing CT-PET registration and tumour volume definition based on the PET image data, for radiotherapy for lung cancer patients and then to test these protocols with respect to levels of accuracy and reproducibility. Method: A phantom-based quality assurance study of the processes associated with using registered CT and PET scans for tumour volume definition was conducted to: (1) investigate image acquisition and manipulation techniques for registering and contouring CT and PET images in a radiotherapy treatment planning system, and (2) determine technology-based errors in the registration and contouring processes. The outcomes of the phantom image based quality assurance study were used to determine clinical protocols. Protocols were developed for (1) acquiring patient PET image data for incorporation into the 3DCRT process, particularly for ensuring that the patient is positioned in their treatment position; (2) CT-PET image registration techniques and (3) GTV definition using the PET image data. The developed clinical protocols were tested using retrospective clinical trials to assess levels of inter-user variability which may be attributed to the use of these protocols. A Siemens Somatom Open Sensation 20 slice CT scanner and a Philips Allegro stand-alone PET scanner were used to acquire the images for this research. The Philips Pinnacle3 treatment planning system was used to perform the image registration and contouring of the CT and PET images. Results: Both the attenuation-corrected and transmission images obtained from standard whole-body PET staging clinical scanning protocols were acquired and imported into the treatment planning system for the phantom-based quality assurance study. Protocols for manipulating the PET images in the treatment planning system, particularly for quantifying uptake in volumes of interest and window levels for accurate geometric visualisation were determined. The automatic registration algorithms were found to have sub-voxel levels of accuracy, with transmission scan-based CT-PET registration more accurate than emission scan-based registration of the phantom images. Respiration induced image artifacts were not found to influence registration accuracy while inadequate pre-registration over-lap of the CT and PET images was found to result in large registration errors. A threshold value based on a percentage of the maximum uptake within a volume of interest was found to accurately contour the different features of the phantom despite the lower spatial resolution of the PET images. Appropriate selection of the threshold value is dependant on target-to-background ratios and the presence of respiratory motion. The results from the phantom-based study were used to design, implement and test clinical CT-PET fusion protocols. The patient PET image acquisition protocols enabled patients to be successfully identified and positioned in their radiotherapy treatment position during the acquisition of their whole-body PET staging scan. While automatic registration techniques were found to reduce inter-user variation compared to manual techniques, there was no significant difference in the registration outcomes for transmission or emission scan-based registration of the patient images, using the protocol. Tumour volumes contoured on registered patient CT-PET images using the tested threshold values and viewing windows determined from the phantom study, demonstrated less inter-user variation for the primary tumour volume contours than those contoured using only the patient’s planning CT scans. Conclusions: The developed clinical protocols allow a patient’s whole-body PET staging scan to be incorporated, manipulated and quantified in the treatment planning process to improve the accuracy of gross tumour volume localisation in 3D conformal radiotherapy for lung cancer. Image registration protocols which factor in potential software-based errors combined with adequate user training are recommended to increase the accuracy and reproducibility of registration outcomes. A semi-automated adaptive threshold contouring technique incorporating a PET windowing protocol, accurately defines the geometric edge of a tumour volume using PET image data from a stand alone PET scanner, including 4D target volumes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer aided technologies, medical imaging, and rapid prototyping has created new possibilities in biomedical engineering. The systematic variation of scaffold architecture as well as the mineralization inside a scaffold/bone construct can be studied using computer imaging technology and CAD/CAM and micro computed tomography (CT). In this paper, the potential of combining these technologies has been exploited in the study of scaffolds and osteochondral repair. Porosity, surface area per unit volume and the degree of interconnectivity were evaluated through imaging and computer aided manipulation of the scaffold scan data. For the osteochondral model, the spatial distribution and the degree of bone regeneration were evaluated. In this study the versatility of two softwares Mimics (Materialize), CTan and 3D realistic visualization (Skyscan) were assessed, too.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of porous structures as tissue engineering scaffolds imposes demands on structural parameters such as porosity, pore size and interconnectivity. For the structural analysis of porous scaffolds, micro-computed tomographyCT) is an ideal tool. μCT is a 3D X-ray imaging method that has several advantages over scanning electron microscopy (SEM) and other conventional characterisation techniques: • visualisation in 3D • quantitative results • non-destructiveness • minimal sample preparation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study provides a simple method for improving precision of x-ray computed tomography (CT) scans of irradiated polymer gel dosimetry. The noise affecting CT scans of irradiated gels has been an impediment to the use of clinical CT scanners for gel dosimetry studies. Method: In this study, it is shown that multiple scans of a single PAGAT gel dosimeter can be used to extrapolate a ‘zero-scan’ image which displays a similar level of precision to an image obtained by averaging multiple CT images, without the compromised dose measurement resulting from the exposure of the gel to radiation from the CT scanner. Results: When extrapolating the zero-scan image, it is shown that exponential and simple linear fits to the relationship between Hounsfield unit and scan number, for each pixel in the image, provides an accurate indication of gel density. Conclusions: It is expected that this work will be utilised in the analysis of three-dimensional gel volumes irradiated using complex radiotherapy treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

...the probabilistic computer simulation study by Dunham and colleagues evaluating the impact of different cervical spine management (CSM) strategies on tetraplegia and brain injury outcomes.1 Based on literature findings, expert opinion and with use of advances programming techniques the authors conclude that early collar removal without cervical spine magnetic resonance imaging (MRI) is a preferable CSM strategy for comatose, blunt trauma patients with extremity movement and a negative cervical spine computed tomography(CT) scan. Although we do not have the required expertise to comment on the applied statistical approach, we would like to comment on one of the medical assumptions raised by the authors, namely the likelihood of tetraplegia in this specific population....

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between radiologic union and clinical outcome in thoracoscopic scoliosis surgery is not clear, as apparent non-union of a spinal fusion does not always correspond to a poor clinical result. The aim of this study was to evaluate CT fusion rates 24 months after thoracoscopic anterior scoliosis surgery, and to explore the relationship between fusion scores and; (i) rod diameter, (ii) graft type, (iii) fusion level, (iv) occurrence of post-operative implant failure, and (v) lateral position of the fusion mass in the intervertebral disc space. We propose that moderate fusion scores on the Sucato scale secure successful clinical outcomes in thoracoscopic scoliosis surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this chapter we will review the use of x-ray computed tomography (CT) scanning in the field of archaeology. The story will be told in roughly chronological order, starting with the first reported use of a CT scanner in the field of archaeology and then look at some some possibilities for the future. Since the introduction of the x-ray CT scanner in the 1970’s the quality of the images has steadily improved enabling the role of the CT scanner to expand into the field of archaeology. In the context of this chapter, archaeology will be deemed to include the study of ancient human remains and artefacts but exclude remains from pre-history, which normally comes under the heading of palaeontology. (It would perhaps be appropriate to note that CT scanners have been successfully applied in the study of fossils). CT scans have mostly been used to study mummies but have also been used to examine other archaeological artefacts such as clay tablets, scrolls, pottery, bronze statues and swords.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The finite element (FE) analysis is an effective method to study the strength and predict the fracture risk of endodontically-treated teeth. This paper presents a rapid method developed to generate a comprehensive tooth FE model using data retrieved from micro-computed tomographyCT). With this method, the inhomogeneity of material properties of teeth was included into the model without dividing the tooth model into different regions. The material properties of the tooth were assumed to be related to the mineral density. The fracture risk at different tooth portions was assessed for root canal treatments. The micro-CT images of a tooth were processed by a Matlab software programme and the CT numbers were retrieved. The tooth contours were obtained with thresholding segmentation using Amira. The inner and outer surfaces of the tooth were imported into Solidworks and a three-dimensional (3D) tooth model was constructed. An assembly of the tooth model with the periodontal ligament (PDL) layer and surrounding bone was imported into ABAQUS. The material properties of the tooth were calculated from the retrieved CT numbers via ABAQUS user's subroutines. Three root canal geometries (original and two enlargements) were investigated. The proposed method in this study can generate detailed 3D finite element models of a tooth with different root canal enlargements and filling materials, and would be very useful for the assessment of the fracture risk at different tooth portions after root canal treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Previous studies report an increase in thoracic kyphosis after anterior approaches and a flattening of sagittal contours following posterior approaches. Difficulties with measuring sagittal parameters on radiographs are avoided with reformatted sagittal CT reconstructions due to the superior endplate clarity afforded by this imaging modality. Methods. A prospective study of 30 Lenke 1 adolescent idiopathic scoliosis (AIS) patients receiving selective thoracoscopic anterior spinal fusion (TASF) was performed. Participants had ethically approved low dose CT scans at minimum 24 months after surgery in addition to their standard care following surgery. The change in sagittal contours on supine CT was compared to standing radiographic measurements of the same patients and with previous studies. Inter-observer variability was assessed as well as whether hypokyphotic and normokyphotic patient groups responded differently to the thoracoscopic anterior approach. Results. Mean T5-12 kyphosis Cobb angle increased by 11.8 degrees and lumbar lordosis increased by 5.9 degrees on standing radiographs two years after surgery. By comparison, CT measurements of kyphosis and lordosis increased by 12.3 degrees and 7.0 degrees respectively. 95% confidence intervals for inter-observer variability of sagittal contour measurements on supine CT ranged between 5-8 degrees. TASF had a slightly greater corrective effect on patients who were hypokyphotic before surgery compared with those who were normokyphotic. Conclusions. Restoration of sagittal profile is an important goal of scoliosis surgery, but reliable measurement with radiographs suffers from poor endplate clarity. TASF significantly improves thoracic kyphosis and lumbar lordosis while preserving proximal and distal junctional alignment in thoracic AIS patients. Supine CT allows greater endplate clarity for sagittal Cobb measurements and linear relationships were found between supine CT and standing radiographic measurements. In this study, improvements in sagittal kyphosis and lordosis following surgery were in agreement with prior anterior surgery studies, and add to the current evidence suggesting that anterior correction is more capable than posterior approaches of addressing the sagittal component of both the instrumented and adjacent non instrumented segments following surgical correction of progressive Lenke 1 idiopathic scoliosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the prominent use of the Suchey-Brooks (S-B) method of age estimation in forensic anthropological practice, it is subject to intrinsic limitations, with reports of differential inter-population error rates between geographical locations. This study assessed the accuracy of the S-B method to a contemporary adult population in Queensland, Australia and provides robust age parameters calibrated for our population. Three-dimensional surface reconstructions were generated from computed tomography scans of the pubic symphysis of male and female Caucasian individuals aged 15–70 years (n = 195) in Amira® and Rapidform®. Error was analyzed on the basis of bias, inaccuracy and percentage correct classification for left and right symphyseal surfaces. Application of transition analysis and Chi-square statistics demonstrated 63.9% and 69.7% correct age classification associated with the left symphyseal surface of Australian males and females, respectively, using the S-B method. Using Bayesian statistics, probability density distributions for each S-B phase were calculated, providing refined age parameters for our population. Mean inaccuracies of 6.77 (±2.76) and 8.28 (±4.41) years were reported for the left surfaces of males and females, respectively; with positive biases for younger individuals (<55 years) and negative biases in older individuals. Significant sexual dimorphism in the application of the S-B method was observed; and asymmetry in phase classification of the pubic symphysis was a frequent phenomenon. These results recommend that the S-B method should be applied with caution in medico-legal death investigations of Queensland skeletal remains and warrant further investigation of reliable age estimation techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contemporary 3D radiotherapy treatment planning relies upon the use of 3D electron density maps derived from computed tomography (CT) scans of patient anatomy, to evaluate the effects of that anatomy on radiation dose distributions. Production of these electron density maps requires that the CT numbers (Hounsfield units) that quantify the attenuation of the x-ray beam by the patient’s anatomy must be reliably converted into electron densities, using a stable calibration relationship. This study investigates the fidelity of electron density assignment in the presence of metallic prostheses and implants.