878 resultados para Computational Delay-Time
Resumo:
Most traditional methods for extracting the relationships between two time series are based on cross-correlation. In a non-linear non-stationary environment, these techniques are not sufficient. We show in this paper how to use hidden Markov models (HMMs) to identify the lag (or delay) between different variables for such data. We first present a method using maximum likelihood estimation and propose a simple algorithm which is capable of identifying associations between variables. We also adopt an information-theoretic approach and develop a novel procedure for training HMMs to maximise the mutual information between delayed time series. Both methods are successfully applied to real data. We model the oil drilling process with HMMs and estimate a crucial parameter, namely the lag for return.
Resumo:
Most traditional methods for extracting the relationships between two time series are based on cross-correlation. In a non-linear non-stationary environment, these techniques are not sufficient. We show in this paper how to use hidden Markov models to identify the lag (or delay) between different variables for such data. Adopting an information-theoretic approach, we develop a procedure for training HMMs to maximise the mutual information (MMI) between delayed time series. The method is used to model the oil drilling process. We show that cross-correlation gives no information and that the MMI approach outperforms maximum likelihood.
Resumo:
The authors have demonstrated an optical fibre grating based delay line which produces time delays in increments as small as 31 ps. The device could provide a true time delay component for a phased array antenna
Computational mechanics reveals nanosecond time correlations in molecular dynamics of liquid systems
Resumo:
Statistical complexity, a measure introduced in computational mechanics has been applied to MD simulated liquid water and other molecular systems. It has been found that statistical complexity does not converge in these systems but grows logarithmically without a limit. The coefficient of the growth has been introduced as a new molecular parameter which is invariant for a given liquid system. Using this new parameter extremely long time correlations in the system undetectable by traditional methods are elucidated. The existence of hundreds of picosecond and even nanosecond long correlations in bulk water has been demonstrated. © 2008 Elsevier B.V. All rights reserved.
Resumo:
Keyword identification in one of two simultaneous sentences is improved when the sentences differ in F0, particularly when they are almost continuously voiced. Sentences of this kind were recorded, monotonised using PSOLA, and re-synthesised to give a range of harmonic ?F0s (0, 1, 3, and 10 semitones). They were additionally re-synthesised by LPC with the LPC residual frequency shifted by 25% of F0, to give excitation with inharmonic but regularly spaced components. Perceptual identification of frequency-shifted sentences showed a similar large improvement with nominal ?F0 as seen for harmonic sentences, although overall performance was about 10% poorer. We compared performance with that of two autocorrelation-based computational models comprising four stages: (i) peripheral frequency selectivity and half-wave rectification; (ii) within-channel periodicity extraction; (iii) identification of the two major peaks in the summary autocorrelation function (SACF); (iv) a template-based approach to speech recognition using dynamic time warping. One model sampled the correlogram at the target-F0 period and performed spectral matching; the other deselected channels dominated by the interferer and performed matching on the short-lag portion of the residual SACF. Both models reproduced the monotonic increase observed in human performance with increasing ?F0 for the harmonic stimuli, but not for the frequency-shifted stimuli. A revised version of the spectral-matching model, which groups patterns of periodicity that lie on a curve in the frequency-delay plane, showed a closer match to the perceptual data for frequency-shifted sentences. The results extend the range of phenomena originally attributed to harmonic processing to grouping by common spectral pattern.
Resumo:
The fabrication of in-fibre Bragg gratings, and the application of arrays of such gratings as strain sensors and as true time delay elements for the control of phased array antennas is reported. Chirped period Bragg gratings were produced using the fibre deformation fabrication technique, with chirps of between 2.9nm and 17.3nm achieved. Arrays of 5mm and 2mm long uniform period Bragg gratings were fabricated using the inscription method, for use as true time delay elements,dissimilar wavefronts and their spectral characteristics recorded. The uniform period grating arrays were used to create minimum time delays of 9.09ps, 19.02ps and 31ps; making them suitable for controlling phased array antennas operating at RF frequencies of up to 3GHz, with 10° phase resolution. Four 4mm long chirped gratings were produced using the dissimilar wavefronts fabrication method, having chirps of 7nm, 12nm, 20nm and 30nm, and were used to create time delays of between 0.3ps and 59ps. Hence they are suitable for controlling phased array antennas at RF frequencies of up to 48GHz. The application of in fibre Bragg gratings as strain sensors within smart structure materials was investigated, with their sensitivity to applied strain and compression measured for both embedded and surface mounted uniform period and fibre Fabry-Perot filter gratings. A fibre Bragg grating sensor demultiplexing scheme based on a liquid crystal filled Fabry-Perot etalon tuneable transmission filter was proposed, successfully constructed and fully characterised. Three characteristics of the LCFP etalon were found to pose operational limitations to its application in a Bragg grating sensor system; most significantly, the resonance peak wavelength was highly (-2,77nm/°C) temperature dependent. Several methods for minimising this temperature sensitivity were investigated, but enjoyed only limited success. It was therefore concluded that this type (E7 filled) of LCFP etalon is unsuitable for use as a Bragg grating sensor demultiplexing element.
Resumo:
A theoretical and experimental investigation of the time delay characteristics of fiber Bragg grating-based Sagnac loops (FBGSLs) is presented. Analytic expressions for the phase and time delay of the FBGSL have been derived and excellent agreement is found between their predictions and experimental results for configurations incorporating uniform-period and chirped-period gratings. For symmetrical grating structures, it is found that the FBGSL time delay response is similar to that of the incorporated grating; with asymmetrical gratings, the FBGSL response is quite different. It is shown that wavelength-division-multiplexing filters exhibiting near-zero dispersion characteristics can be implemented using FBGSLs.
Resumo:
We have developed the analytic expressions for the phase response and time delay of FBGSL of arbitrary grating structure and found that the results from the modelling are in excellent agreement with that of the experimentally measured real devices. The theoretical and experimental investigation clearly reveals that FBGSLs utilizing uniform and linearly chirped gratings exhibit a near-constant time delay in the passbands. Such multi-channel bandpass filters should be highly attractive to WDM applications as they are operating in transmission regime and offering near-zero dispersion.
Resumo:
One of the simplest ways to create nonlinear oscillations is the Hopf bifurcation. The spatiotemporal dynamics observed in an extended medium with diffusion (e.g., a chemical reaction) undergoing this bifurcation is governed by the complex Ginzburg-Landau equation, one of the best-studied generic models for pattern formation, where besides uniform oscillations, spiral waves, coherent structures and turbulence are found. The presence of time delay terms in this equation changes the pattern formation scenario, and different kind of travelling waves have been reported. In particular, we study the complex Ginzburg-Landau equation that contains local and global time-delay feedback terms. We focus our attention on plane wave solutions in this model. The first novel result is the derivation of the plane wave solution in the presence of time-delay feedback with global and local contributions. The second and more important result of this study consists of a linear stability analysis of plane waves in that model. Evaluation of the eigenvalue equation does not show stabilisation of plane waves for the parameters studied. We discuss these results and compare to results of other models.
Resumo:
Standing waves are studied as solutions of a complex Ginzburg-Landau equation subjected to local and global time-delay feedback terms. The onset is described as an instability of the uniform oscillations with respect to spatially periodic perturbations. The solution of the standing wave pattern is given analytically and studied through simulations. © 2013 American Physical Society.
Resumo:
A complex Ginzburg-Landau equation subjected to local and global time-delay feedback terms is considered. In particular, multiple oscillatory solutions and their properties are studied. We present novel results regarding the disappearance of limit cycle solutions, derive analytical criteria for frequency degeneration, amplitude degeneration, frequency extrema. Furthermore, we discuss the influence of the phase shift parameter and show analytically that the stabilization of the steady state and the decay of all oscillations (amplitude death) cannot happen for global feedback only. Finally, we explain the onset of traveling wave patterns close to the regime of amplitude death.
Resumo:
2010 Mathematics Subject Classification: 60J80.
Resumo:
Peer reviewed