914 resultados para Complexes de cobalt
Resumo:
The tetrachlorocuprate(II) ion can crystallize in two different structures with the piperazinium dication (pipzH(2)). Both structures contain discrete CuCl42- species. A yellow compound (pipzH(2))[CuCl4]. 2H(2)O (1) is monoclinic (C2/c, Z = 4, a = 10.538(3) Angstrom, b = 7.4312(5) Angstrom, c = 17.281(4) Angstrom, beta = 111.900(10)degrees) and contains the CuCl42- ion as a distorted tetrahedron. A green compound (pipzH(2))(2)[CuCl4]. Cl-2. 3H(2)O (2) is triclinic (P (1) over bar, Z = 2, a = 9.264(3) Angstrom, b = 10.447(2) Angstrom, c = 11.366(2) Angstrom, alpha = 68.38 degrees, beta = 82.86(2)degrees, gamma = 83.05(2)degrees) and contains the CuCl42- ion with a square planar geometry. This latter compound shows thermo/photochromism, changing from green to yellow upon heating or laser irradiation.
Resumo:
The basic framework for the JAK/STAT pathway is well documented. Recruitment of latent cytoplasmic STAT transcription factors to tyrosine phosphorylated docking sites on cytokine receptors and their JAK-mediated phosphorylation instigates their translocation to the nucleus and their ability to bind DNA, The biochemical processes underlying recruitment and activation of this pathway have commonly been studied in reconstituted in vitro systems using previously defined recombinant signaling components. We have dissected the Interferon gamma (IFN gamma) signal transduction pathway in crude extracts from wild-type and STAT1-negative mutant cell Lines by real-time BIAcore analysis, size-exclusion (SE) chromatography and immune-detection. The data indicate that in detergent-free cell extracts: (1) the phospho-tyrosine (Y440P)-containing peptide motif of the IFN gamma-receptor ct-chain interacts directly with STAT1, or STAT1 complexes, and no other protein; (2) nonactivated STAT 1 is present in a higher molecular weight complex(es) and, at least for IFN gamma-primed cells, is available for recruitment to the activated IFN gamma-receptor from only a subset of such complexes; (3) activated STAT1 is released from the receptor as a monomer.
Resumo:
Mixed valence complexes containing ferro- and ferricyanide have been known for almost 300 years, but no dinuclear, non-polymeric examples of these complexes have been structurally characterized. Here we report the first such example, comprising ferrocyanide coordinated to a pentaaminecobalt(III) complex. This Fe-II-Co-III complex may be reversibly oxidized to the Fe-III-Co-III analogue.
Resumo:
Reaction of K-3[Cr(ox)(3)] (ox = oxalate) with nickel(II) and tris(2-aminoethyl)amine (tren) in aqueous solution resulted in isolation of the bimetallic assembly [Ni-3(tren)(4)(H2O)(2)][Cr(ox)(3)](2). 6H(2)O. The polymeric complex {[Ni-2(tren)(3)][ClO4](4). H2O}(n) has been prepared by reaction of nickel(II) perchlorate and tren in aqueous solution. From the same reaction mixture the complex [Ni-2(tren)(2)(aepd)][ClO4](4). 2H(2)O (aepd = N-(2-aminoethyl)pyrrolidine-3,4-diamine), in which a bridging tren ligand contains a carbon-carbon bond between two arms forming a substituted pyrrolidine, has been isolated. The complexes have been characterized by X-ray crystallography. The magnetic susceptibility (300-4.2 K) and magnetization data (2, 4 K, H = 0-5 T) for {[Ni-2(tren)(3)][ClO4](4). H2O}(n) (300 K , 4.23 mu(B)) exhibit evidence of weak antiferromagnetic coupling and zero field splitting (2J = -1.8 cm(-1); \ D\ = 2 cm(-1)) at low temperature. For [Ni-3(tren)(4)(H2O)(2)][Cr(ox)(3)](2). 6H(2)O the susceptibility data at 300 K are indicative of uncoupled nickel(II) and chromium(III) sites with zero-field splitting and intramolecular antiferromagnetic coupling predicted at low temperature.
Resumo:
Catalytic conversion of N2O to N-2 With potassium catalysts supported on activated carbon (K/AC) was investigated. Potassium proves to be much more active and stable than either copper or cobalt because potassium possesses strong abilities both for N2O chemisorption and oxygen transfer. Potassium redispersion is found to play a critical role in influencing the catalyst stability. A detailed study of the reaction mechanism was conducted based upon three different catalyst loadings. It was found that during temperature-programmed reaction (TPR), the negative oxygen balance at low temperatures (< 50 degrees C) is due to the oxidation of the external surface of potassium oxide particles, while the bulk oxidation accounts for the oxygen accumulation at higher temperatures (below ca. 270 degrees C). N2O is beneficial for the removal of carbon-oxygen complexes because of the formation of CO2 instead of CO and because of its role in making the chemisorption of produced CO2 on potassium oxide particles less stable. A conceptual three-zone model was proposed to clarify the reaction mechanism over K/AC catalysts. CO2 chemisorption at 250 degrees C proves to be an effective measurement of potassium dispersion. (C) 1999 Academic Press.
Resumo:
The 12-membered macrocyclic ligand 1-thia-4,7, 10-triazacyclododecane ([12]aneN(3)S) has been synthesised, although upon crystallization from acetonitrile a product in which carbon dioxide had added to one secondary amine in the macrocyclic ring (H[12]aneN(3)SCO(2). H2O) was isolated and subsequently characterised by X-ray crystallography. The protonation constants for [12]aneN(3)S and stability constants with Zn(II), Pb(II), Cd(II) and Cu(II) have been determined either potentiometrically or spectrophotometrically in aqueous solution, and compared with those measured or reported for the ligands 1-oxa-4,7,10-triazacyclododecane ([12]aneN(3)O) and 1,4,7,10-tetraazacyclododecane ([12]aneN(4)). The magnitudes of the stability constants are consistent with trends observed previously for macrocyclic ligands as secondary amine donors are replaced with oxygen and thioether donors although the stability constant for the [Hg([12]aneN(4))](2+) complex has been estimated from an NMR experiment to be at least three orders of magnitude larger than reported previously. Zinc(II), mercury(II), lead(II), copper(II) and nickel(II) complexes of [12]aneN(3)S have been isolated and characterised by X-ray crystallography. In the case of copper(II), two complexes [Cu([12]aneN(3)S)(H2O)](ClO4)(2) and [Cu-2([12]aneN(3)S)(2)(OH)(2)](ClO4)(2) were isolated, depending on the conditions employed. Molecular mechanics calculations have been employed to investigate the relative metal ion size preferences of the [3333], asym-[2424] and sym-[2424] conformation isomers. The calculations predict that the asym-[2424] conformer is most stable for M-N bond lengths in the range 2.00-2.25 Angstrom whilst for the larger metal ions the [3333] conformer is dominant. The disorder seen in the structure of the [Zn([12]aneN(3)S)(NO3)](+) complex is also explained by the calculations. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The structures of diaqua(1,7-dioxa-4-thia-10-azacyclododecane)nickel dinitrate, [Ni(C8H17NO2S)(H2O)(2)](NO3)(2), (I), bis(nitrato-O,O')(1,4,7-trioxa-10-azacyclododecane)mercury, [Hg(NO3)(2)(C8H17NO3)], (II), and aqua(nitrato-O)(1-oxa-4,7,10-triazacyclododecane)copper nitrate, [Cu(NO3)(C8H19N3O)(H2O)]NO3, (III), reveal each macrocycle binding in a tetradentate manner. The conformations of the ligands in (I) and (III) are the same and distinct from that identified for (II). These differences are in agreement with molecular-mechanics predictions of ligand conformation as a function of metal-ion size.
Resumo:
The reaction of the bis(propane-1,3-diamine)copper(II) ion with paraformaldehyde and nitroethane in dry methanol under basic conditions produces a macrocyclic product, (cis-3,11-dimethyl-3,11-dinitro-1,5,9,13-tetraazacyclohexadecane)copper(II) perchlorate, in low yield, compared with the good yield obtained in the parallel chemistry possible even under aqueous conditions using palladium(II) as a template. The palladium complex was reduced with zinc amalgam in dilute aqueous acid to yield the metal-free 16-membered macrocyclic hexaamine, in this case re-complexed and characterised by an X-ray crystal structure as the (cis-3,11-dimethyl-1,5,9,13-tetraazacyclohexadecane-3,11-diamine)copper(II) perchlorate. The copper ion is found in a tetragonally elongated and trigonally-distorted octahedral environment, with all six of the ligand nitrogens coordinated, the two primary amine pendant groups occupying cis sites. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
For many years proof that the hypoxic nature of malignant tumours can be used to selectively target anticancer drugs has been sought. Several classes of potential redox activated anticancer drugs have been developed to take advantage of the reducing environment resulting from the hypoxia. Drug complexes with redox active metal centres as carriers have been investigated, but have largely been employed with cytotoxic drugs that require release of the drug intracellularly, complicating the design of such complexes. MMP inhibitors, a new class of anticancer drug, conversely act in the extracellular environment and we have investigated inhibitor complexes with several redox active transition metals. Marimastat is an MMP inhibitor with potent in-vitro antimetastatic activity and was recently in Phase III clinical trials for a variety of cancer types. We have synthesised a Co(II1) complex of marimastat incorporating the tetradentate ligand tpa (tris(2-methylpyridyl)amine) as a carrier ligand. The complex was structurally characterised in the solid state by single crystal X-ray diffraction, the first example of a crystal structure containing marimastat. 2D COSY and NOESY NMR spectra showed that the complex exists in two isomeric forms in solution, corresponding to the cis and trans isomers yet only crystallises in one of these forms. Biological testing of the complex in mice with 4T1.2 tumours showed interesting and unexpected outcomes. Initial results of the tumour growth inhibition study showed that a significant inhibition of growth was exhibited by the complex over the free inhibitor and the control. However, the metastatic potential of both free marimastat and the complex were higher than the control indicating likely problems with the experimental protocol. Further experiments are needed to determine the potential of such complexes as hypoxia activated prodrugs but there appears at least to be some promise.
Resumo:
The novel asymmetric metallo-organic triads cis- and trans-[B(4-py)BPFPH(2){Ru(3)O(Ac)(6)(py)(2)}(Ru(bpy)(2)Cl}](PF(6))(2) (5a,b) for which cis- and trans-B(4-py)BPFPH(2)=5,10-bis(pentafluorophenyl)-15,20-bis(4-pyridyl)porphyrin and 5,15-bis(pentafluorophenyl)-10,20-bis(4-pyridyl)porphyrin, respectively; Ac = acetate; py = pyridine and bpy = 2,2`-bipyridine, as well as their corresponding monosubstituted dyads cis- and trans-[B(4-py)BPFPH(2){Ru(3)O(Ac)(6)(py)(2)}]PF(6) (4a,b) have been structurally characterized via electrospray ionization mass spectrometry (ESI-MS and ESI-MS/MS). The ESI-MS of dyads 4a,b display two characteristic Ru-multicomponent clusters of isotopologue ions corresponding to singly charged ions 4a,b(+) of m/z 1629 and doubly charged ions [4a,b+H](2+) of m/z 815 and the triads 5a,b are detected by ESI-MS as the intact doubly charged cluster of isotopologue ions of m/z 1039 [5a,b](2+). The ESI-MS/MS of 4a,b(+), [4a,b+H](2+) and [5a,b](2+) reveal characteristic dissociation pathways, which confirm the structural assignments providing additional information on the intrinsic binding strengths of the gaseous ions. Although the gas-phase behavior of each pair of isomers was rather similar, the less symmetric dyads 4a,b are distinguished via the (1)H NMR spectral profile of the pyrrolic signals. Exploratory photophysical assays have shown that both modifying motifs alter the porphyrinic core emission profile, opening the possibility to use these asymmetric systems as photophysical devices. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The photochemical behavior of nitrosyl complexes Ru(salen)(NO)(OH(2))(+) and Ru(salen)(NO) Cl (salen = N, N`-ethylenebis-(salicylideneiminato) dianion) in aqueous solution is described. Irradiation with light in the 350-450 nm range resulted in nitric oxide (NO) release from both. For Ru(salen)(NO) Cl secondary photoreactions also resulted in chloride aquation. Thus, in both cases the final photoproduct is the diaquo cation Ru(III) (salen) (OH(2))(2)(+), for which pK(a)`s of 5.9 and 9.1 were determined for the coordinated waters. The pK(a) of the Ru(salen)(NO)(OH(2))+ cation was also determined as 4.5 +/- 0.1, and the relative acidities of these ruthenium aquo units are discussed in the context of the bonding interactions between Ru(III) and NO. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The synthesis and structures of two new isostructural mononuclear [Ln(L)(NO(3))(H(2)O)(3)](NO(3))(2) complexes, with Ln = Tb (complex 1) and Eu (complex 2), which display high activity in the hydrolysis of the substrate 2,4-bis(dinitrophenyl)phosphate, are reported. These complexes displayed catalytic behavior similar to the mononuclear gadolinium complex [Gd(L)(NO(3))(H(2)O)(3)](NO(3))(2) previously reported by us (lnorg. Chem. 2008, 47, 2919-2921); one hydrolysis reaction in two stages where the diesterase and monoesterase activities could be monitored separately, with the first stage dependent on and the second independent of the complex concentration. Through potentiometric studies, electrospray ionization mass spectrometry (ESI-MS) analysis, and determination of the kinetic behaviors of 1 and 2 in acetonitrile/water solution, the species present in solution could be identified and suggested a dinuclear species, with one hydroxo group, as the most prominent catalyst under mild conditions. The complexes show high activity (k(1)= 7 and 18 s(-1) for 1 and 2, respectively) and catalytic efficiency. Complexes 1 and 2 were found to be active toward the cleavage of plasmid DNA, and complete kinetic studies were carried out. Studies with a radical scavenger (dimethylsulfoxide) confirmed the hydrolytic action of 1 and 2 in the cleavage of DNA. Studies on the incubation of distamycin with plasmid DNA suggested that 1 and 2 are regio-specific, interacting with the minor groove of DNA. These complexes displayed luminescent properties. Complex 1 showed higher emission intensity than 2 due to a more efficient energy transfer between triplet and emission levels of terbium (T -> (5)D(4)), along with nonradiative deactivation mechanisms of the excited states of europium via multiphonon decays and the ligand-to-metal charge transfer state. Lifetime measurements of the (5)D(4) and (5)D(0) excited levels for 1 and 2, respectively, indicated the numbers of coordinated water molecules for the complexes.
Resumo:
In this work, a fast, non destructive voltammetric method for cocaine detection in acetonitrile medium using a platinum disk electrode chemically modified with cobalt-hexacyanoferrate (CoHCFe) film is described. The deposition of CoHCFe film at platinum disk (working electrode) was carried out in aqueous solution containing NaClO(4) at 0.1 mol L(-1) as supporting electrolite. Stability studies of the film and subsequent voltammetric analysis of cocaine were made in acetonitrile medium with NaClO4 at 0.1 mol L(-1) as supporting electrolite. A reversible interaction between cocaine and CoHCFe at the film produces a proportional decrease of original peak current, due to the formation of a complex between cocaine and cobalt ions, with subsequent partial passivation of the film surface, being the intensity of current decrease used as analytical signal for cocaine. A linear dependence of cocaine detection was carried out in the range from 2.4 x 10 x 4 to 1.5 x 10(-3) mol L(-1), with a linear correlation coefficient of 0.994 and a detection limit of 1.4 x 10 x 4 mol L(-1). The analysis of confiscated samples by the proposed method indicated cocaine levels from 37% to 95% (m/m) and these results were validated by comparison to HPLC technique, being obtained good correlation between both methods. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The Jacobsen catalyst, Mn(salen), was immobilized in chitosan membrane. The obtained Mn(salen)-Chit was characterized by thermogravimetric analysis (TC), differential thermal analysis (DTA), differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), degree of N-acetylation by (1)H NMR, and UV-vis spectroscopy. The UV-vis absorption spectrum of the encapsulated catalyst displayed the typical bands of the Jacobsen catalyst, and the FT-IR presented an absorption band characteristic of the imines present in the Jacobsen catalyst. The chitosan membranes were available, in a biphasic system, as a catalytic barrier between two different phases: an organic substrate phase (cyclooctene or styrene) and an aqueous solution of either m-CPBA, t-BuOOH or H(2)O(2), and dismissing the need for phase transfer agents and leading to better product yields compared with the catalyst in homogeneous medium. This new catalyst did not leach from the support and was reused many times, leading to high turnover frequencies. (C) 2009 Elsevier B.V. All rights reserved.