980 resultados para Complex products
Resumo:
The sensitized photolysis of [Ru(NH3)(6)](2+) by the organic dye rhodamine B and biacetyl was studied under conditions in which only the sensitizer absorbs. The reaction products resulting from ammonia aquation and Ru(II) to Ru(III) oxidation are the same for direct and sensitized photolysis. The energy transfer rate constant, calculated from the fluorescence quenching of rhodamine B, is similar to that estimated from the limiting quantum yield of the photosensitized photoaquation of the complex. Both reactions originate from a common reactive low-lying ligand-field (LF) state, which is also responsible for the direct photolysis reactions. This state, which leads directly to photoaquation, seems to have a certain charge transfer to solvent (CTTS) character, which is responsible for the photo-oxidation products. Sensitization is effective with rhodamine B (17 450 cm(-1)) and biacetyl (19 000 cm(-1)), whereas no reaction is observed with neutral red (16 900 cm(-1)). These results show that the excited state responsible for the photochemical reactions lies in the energy range between 16 900 cm(-1) and 17 700 cm(-1) and possesses spin-orbit character.
Resumo:
Tin(II) complexes with 8-hydroxyquinolinate in solid state have been obtained by adding aqueous ammonium to a solution containing stannous chloride and 8-hydroxiquinoline in medium of HCl and acetone up to pH 5 and 9, respectively. The products obtained show the same composition, Sn(C9H6ON)(2); however there are some differences regarding both the thermal behaviour in an oxidant atmosphere and morphology. These products were characterised by elemental and complexometric analysis, TG and DTA curves, infrared and X-ray diffractometry. TG curves show, above 448 K, the partial oxidation on air atmosphere of Sn(II) complexes to Sn(IV) complexes, SnO(C9H6ON)(2). This behaviour does not depend only on pH in which the compounds were obtained but also on the heating rate in TG curves. Sn(II) complexes volatilise almost completely on nitrogen atmosphere and partially on air atmosphere depending on the oxidation degree of the compound.
Resumo:
Turmeric oleoresin is a colorant prepared by solvent extraction of turmeric (Curcuma longa L.). Curcumin, the major pigment present in turmeric, has been described as a potent antioxidant, anti-inflammatory and anticarcinogenic agent. Turmeric pigments are lipid soluble and water insoluble and are sensitive to light, heat, oxygen and pH, which can be overcome by microencapsulation of turmeric oleoresin. The aim of this work was to investigate microencapsulation of turmeric oleoresin by complex coacervation using gelatin and gum Arabic as encapsulants and freeze-drying as the drying method. The coacervation process was studied by varying the concentration of biopolymer solution (2.5, 5.0 and 7.5%) and the core material: total encapsulant ratio (25, 50, 75 and 100%). Microcapsules were evaluated for encapsulation efficiency, morphology, solubility and stability to light. Encapsulation efficiency ranged from 49 to 73% and samples produced with 2.5% of wall material and 100% core: encapsulant ratio showed better stability to light. © 2012 Wiley Periodicals, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Different components of the mixed function oxidase (MFO) system and the levels of fluorescent aromatic compounds in bile (FACs) were measured in Cathorops spixii in order to assess the impact of polycyclic aromatic hydrocarbons (PAHs). Fish were sampled in an estuary (Santos/Sao Vicente) with a history of contamination by PAHs, mainly due to the presence of the industrial complex of Cubatao city and of another of low anthropogenic influence (Cananeia) on the Brazilian coast. FACs were higher in fish from the polluted site, and the PAH 5 and 6-ring metabolites were the most frequent - with 14% and 15%, respectively. Levels of the different components of the MFO system showed the same variation profile as the FACs for both estuaries. Therefore, the values found for somatic indexes and biomarkers with data of bile PAH metabolites indicate the presence of organic contaminants, especially in the area subject to the influence of the industrial complex on the Santos/Sao Vicente estuary.
Resumo:
This work evaluates the efficiency of economic levels of theory for the prediction of (3)J(HH) spin-spin coupling constants, to be used when robust electronic structure methods are prohibitive. To that purpose, DFT methods like mPW1PW91. B3LYP and PBEPBE were used to obtain coupling constants for a test set whose coupling constants are well known. Satisfactory results were obtained in most of cases, with the mPW1PW91/6-31G(d,p)//B3LYP/6-31G(d,p) leading the set. In a second step. B3LYP was replaced by the semiempirical methods PM6 and RM1 in the geometry optimizations. Coupling constants calculated with these latter structures were at least as good as the ones obtained by pure DFT methods. This is a promising result, because some of the main objectives of computational chemistry - low computational cost and time, allied to high performance and precision - were attained together. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Low-molecular-weight heparins (LMWHs) have shown equivalent or superior efficacy and safety to unfractionated heparin as antithrombotic therapy for patients with acute coronary syndromes. Each approved LMWH is a pleotropic biological agent with a unique chemical, biochemical, biophysical and biological profile and displays different pharmacodynamic and pharmacokinetic profiles. As a result, LMWHs are neither equipotent in preclinical assays nor equivalent in terms of their clinical efficacy and safety. Previously, the US Food and Drug Administration (FDA) cautioned against using various LMWHs interchangeably, however recently, the FDA approved generic versions of LMWH that have not been tested in large clinical trials. This paper highlights the bio-chemical and pharmacological differences between the LMWH preparations that may result in different clinical outcomes, and also reviews the implications and challenges physicians face when generic versions of the original/innovator agents are approved for clinical use.
Resumo:
Traditional software engineering approaches and metaphors fall short when applied to areas of growing relevance such as electronic commerce, enterprise resource planning, and mobile computing: such areas, in fact, generally call for open architectures that may evolve dynamically over time so as to accommodate new components and meet new requirements. This is probably one of the main reasons that the agent metaphor and the agent-oriented paradigm are gaining momentum in these areas. This thesis deals with the engineering of complex software systems in terms of the agent paradigm. This paradigm is based on the notions of agent and systems of interacting agents as fundamental abstractions for designing, developing and managing at runtime typically distributed software systems. However, today the engineer often works with technologies that do not support the abstractions used in the design of the systems. For this reason the research on methodologies becomes the basic point in the scientific activity. Currently most agent-oriented methodologies are supported by small teams of academic researchers, and as a result, most of them are in an early stage and still in the first context of mostly \academic" approaches for agent-oriented systems development. Moreover, such methodologies are not well documented and very often defined and presented only by focusing on specific aspects of the methodology. The role played by meta- models becomes fundamental for comparing and evaluating the methodologies. In fact a meta-model specifies the concepts, rules and relationships used to define methodologies. Although it is possible to describe a methodology without an explicit meta-model, formalising the underpinning ideas of the methodology in question is valuable when checking its consistency or planning extensions or modifications. A good meta-model must address all the different aspects of a methodology, i.e. the process to be followed, the work products to be generated and those responsible for making all this happen. In turn, specifying the work products that must be developed implies dening the basic modelling building blocks from which they are built. As a building block, the agent abstraction alone is not enough to fully model all the aspects related to multi-agent systems in a natural way. In particular, different perspectives exist on the role that environment plays within agent systems: however, it is clear at least that all non-agent elements of a multi-agent system are typically considered to be part of the multi-agent system environment. The key role of environment as a first-class abstraction in the engineering of multi-agent system is today generally acknowledged in the multi-agent system community, so environment should be explicitly accounted for in the engineering of multi-agent system, working as a new design dimension for agent-oriented methodologies. At least two main ingredients shape the environment: environment abstractions - entities of the environment encapsulating some functions -, and topology abstractions - entities of environment that represent the (either logical or physical) spatial structure. In addition, the engineering of non-trivial multi-agent systems requires principles and mechanisms for supporting the management of the system representation complexity. These principles lead to the adoption of a multi-layered description, which could be used by designers to provide different levels of abstraction over multi-agent systems. The research in these fields has lead to the formulation of a new version of the SODA methodology where environment abstractions and layering principles are exploited for en- gineering multi-agent systems.
Resumo:
The present thesis deals with the development of new branched polymer architectures containing hyperbranched polyglycerol. Materials investigated include hyperbranched oligomers, hyperbranched polyglycerols containing functional initiator-cores at the focal point, well-defined linear-hyperbranched block copolymers and also negatively charged hyperbranched polyelectrolytes.rnHyperbranched oligoglycerols (DPn = 7 and 14) have been synthesized for the first time. The materials show narrow polydispersity (Mw/Mn ca. 1.45) and a very low content in cyclic homopolymers. 13C NMR evidences the dendritic structure of the oligomers and the DB could be calculated (44% and 52%). These new oligoglycerols were compared with the industrial products obtained by polycondensation which exhibit narrow polydispersity (Mw/Mn<1.3) butrnmultimodal distribution in SEC. Detailed 13C NMR and Maldi-ToF studies reveal the presence of branched units and cyclic compounds. In comparison, the hyperbranched oligoglycerols comprise a very low proportion of cyclic homopolymer which render them very interesting materials for biomedical applications for example.rnThe site isolation of the core moiety in dendritic structure offers intriguing potential with respect to peculiar electro-optical properties. Various initiator-cores (n-alkyl amines, UVabsorbing amines and benzophenone) for the ROMBP of glycidol have been tested. The bisglycidolized amine initiator-cores show the best control over the molecular weight and the molecular weight distribution. The photochemical analyses of the naphthalene containingrnhyperbranched polyglycerols show a slight red shift, a pronounced hypochromic effect (decrease of the intensity of the band) compared with the parent model compound and the formation of a relative compact structure. The benzophenone containing polymers adopt an open structure in polar solvents. The fluorescence measurements show a clear “dendritic effect” on the fluorescence intensities and the quantum yield of the encapsulated benzophenone.rnA convenient 3-step strategy has been developed for the preparation of well-defined amphiphilic, linear-hyperbranched block copolymers via hypergrafting. The procedure represents a combination of carbanionic polymerization with the alkoxide-based, controlled ring-opening multibranching polymerization of glycidol. Materials consisting of a polystyrene linear block and a hyperbranched polyglycerol block exhibit narrow polydispersity (1.01-1.02rnfor 5.4% to 27% wt. PG and 1.74 for 52% wt. PG) with a high grafting efficiency. The strategy was also extended to materials with a linear polyisoprene block.rnDetailed investigations of the solution properties of the block copolymers with linear polystyrene blocks show that block copolymer micelles are stabilized by the highly branched block. The morphology of the aggregates is depending on the solvent: in chloroform monodisperse spherical shape aggregates and in toluene ellipsoidal aggregates are formed. On graphite these aggregates show interesting features, giving promising potential applications with respect to the presence of a very dense, functional and stable hyperbranched block.rnThe bulk morphology of the linear-hyperbranched block copolymers has been investigated. The materials with a linear polyisoprene block only behave like complex liquids due to the low Tg and the disordered nature of both components. For the materials with polystyrene, only the sample with 27% wt. hyperbranched polyglycerol forms some domains showing lamellae.rnThe preparation of hyperbranched polyelectrolytes was achieved by post-modification of the hydroxyl groups via Michael addition of acrylonitrile, followed by hydrolysis. In aqueous solution materials form large aggregates with size depending on the pH value. After deposition on mica the structures observed by AFM show the coexistence of aggregates andrnunimers. For the low molecular weight sample (PG 520 g·mol-1) extended and highly ordered terrace structures were observed. Materials were also successfully employed for the fabrication of composite organic-inorganic multilayer thin films, using electrostatic layer-bylayer self-assembly coupled with chemical vapor deposition.
Resumo:
Among hyperbranched polymers, polyglycerol is one of the most promising and commonly used macromolecules due to its biocompatibility and versatility. However, the synthesis of high molecular weight polyglycerols still involves many intricacies and has only been understood to a limited extent. Furthermore, only few complex structures like star or block copolymers incorporating polyglycerol have been realized so far. Particularly biocompatible block copolymers are considered promising candidates for biomedical applications.rnThe scope of this thesis was the enhancement of the synthetic process leading to polyglycerol derivatives which implies improved molecular weight control for a broad molecular weight range as well as the assembly of more complex structures like amphiphilic block copolymers. Further insight into the relation between reaction solvent, degree of deprotonation during the ring-opening multibranching polymerization of glycidol and the characteristics of the obtained polymers were achieved within the scope of this work. Based on these results, a novel concept for the preparation of hyperbranched polyglycerols with molecular weights up to 20,000 g/mol was developed, applying a two step synthesis pathway. Starting from a partially deprotonated TMP core, low molecular weight hb-PGs were prepared using the known synthetic protocol that has been established since the late 1990ies. In a subsequent reaction sequence, these well defined polymers were used as hyperbranched macroinitiator cores in order to obtain high molecular weight hb-PGs with remarkably low polydispersity (Mw/Mn < 1.8). Molecular weight control was shown to be excellent and undesired low molecular weight side products were absent. Furthermore, the technique of continuous spin fractionation has been discovered as an efficient method for polyglycerol work-up to remove quantitatively residual monomer- and oligomer traces from hb-PG compositions to result in samples with significantly reduced polydispersities. Based on these results the synthesis of amphiphilic block copolymers containing hydrophilic hyperbranched polyglycerol blocks and linear, apolar poly(propylene oxide) blocks has been significantly improved and augmented to hb-PG-b-l-PPO-b-hb-PG ABA block copolymers. The influence of different polyglycerol-based amphiphiles on the fibril formation was studied by Thioflavin T Fluorescence showing remarkable increasing lag times which is promising in order to enhance the stability of this protein. In addition the first synthesis of poly(glyceryl glycerols) (PGG), introducing a new solketyl glycidyl ether monomer (IGG) was shown. It was furthermore demonstrated that core-functional carbosilane wedges allow application in block copolymer synthesis. Bisglycidolized amine functional polymers were successfully employed as macroinitiators for glycidol polymerization. This resulted in the first example of amphiphilic hyperbranched-hyperbranched polymer structures. Finally, it has been shown that the previously reported synthetic pathway to carboxylated hyperbranched polyglycerol polyelectrolytes can also be applied for the amphiphilic linear-hyperbranched block copolymers. These novel biocompatible and highly amphiphilic polyelectrolytes offer great potential for further investigations. rnrn
Resumo:
The subject of this study is to investigate the capability of spaceborne remote sensing data to predict ground concentrations of PM10 over the European Alpine region using satellite derived Aerosol Optical Depth (AOD) from the geostationary Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and the polar-orbiting MODerate resolution Imaging Spectroradiometer (MODIS). The spatial and temporal resolutions of these aerosol products (10 km and 2 measurements per day for MODIS, ∼ 25 km and observation intervals of 15 min for SEVIRI) permit an evaluation of PM estimation from space at different spatial and temporal scales. Different empirical linear relationships between coincident AOD and PM10 observations are evaluated at 13 ground-based PM measurement sites, with the assumption that aerosols are vertically homogeneously distributed below the planetary Boundary Layer Height (BLH). The BLH and Relative Humidity (RH) variability are assessed, as well as their impact on the parameterization. The BLH has a strong influence on the correlation of daily and hourly time series, whilst RH effects are less clear and smaller in magnitude. Despite its lower spatial resolution and AOD accuracy, SEVIRI shows higher correlations than MODIS (rSEV∼ 0.7, rMOD∼ 0.6) with regard to daily averaged PM10. Advantages from MODIS arise only at hourly time scales in mountainous locations but lower correlations were found for both sensors at this time scale (r∼ 0.45). Moreover, the fraction of days in 2008 with at least one satellite observation was 27% for SEVIRI and 17% for MODIS. These results suggest that the frequency of observations plays an important role in PM monitoring, while higher spatial resolution does not generally improve the PM estimation. Ground-based Sun Photometer (SP) measurements are used to validate the satellite-based AOD in the study region and to discuss the impact of aerosols' micro-physical properties in the empirical models. A lower error limit of 30 to 60% in the PM10 assessment from space is estimated in the study area as a result of AOD uncertainties, variability of aerosols properties and the heterogeneity of ground measurement sites. It is concluded that SEVIRI has a similar capacity to map PM as sensors on board polar-orbiting platforms, with the advantage of a higher number of observations. However, the accuracy represents a serious limitation to the applicability of satellites for ground PM mapping, especially in mountainous areas.
Resumo:
The separation of small molecules by capillary electrophoresis is governed by a complex interplay among several physical effects. Until recently, a systematic understanding of how the influence of all of these effects is observed experimentally has remained unclear. The work presented in this thesis involves the use of transient isotachophoretic stacking (tITP) and computer simulation to improve and better understand an in-capillary chemical assay for creatinine. This assay involves the use of electrophoretically mediated micro-analysis (EMMA) to carry out the Jaffé reaction inside a capillary tube. The primary contribution of this work is the elucidation of the role of the length and concentration of the hydroxide plug used to achieve tITP stacking of the product formed by the in-capillary EMMA/Jaffé method. Computer simulation using SIMUL 5.0 predicts that a 3-4 fold gain in sensitivity can be recognized by timing the tITP stacking event such that the Jaffé product peak is at its maximum height as that peak is electrophoresing past the detection window. Overall, the length of the hydroxide plug alters the timing of the stacking event and lower concentration plugs of hydroxide lead to more rapidly occurring tITP stacking events. Also, the inclusion of intentional tITP stacking in the EMMA/Jaffé method improves the sensitivity of the assay, including creatinine concentrations within the normal biological range. Ultimately, improvement in assay sensitivity can be rationally designed by using the length and concentration of the hydroxide plug to engineer the timing of the tITP stacking event such that stacking occurs as the Jaffé product is passing the detection window.
Resumo:
The goal of this paper is to contribute to the understanding of complex polynomials and Blaschke products, two very important function classes in mathematics. For a polynomial, $f,$ of degree $n,$ we study when it is possible to write $f$ as a composition $f=g\circ h$, where $g$ and $h$ are polynomials, each of degree less than $n.$ A polynomial is defined to be \emph{decomposable }if such an $h$ and $g$ exist, and a polynomial is said to be \emph{indecomposable} if no such $h$ and $g$ exist. We apply the results of Rickards in \cite{key-2}. We show that $$C_{n}=\{(z_{1},z_{2},...,z_{n})\in\mathbb{C}^{n}\,|\,(z-z_{1})(z-z_{2})...(z-z_{n})\,\mbox{is decomposable}\},$$ has measure $0$ when considered a subset of $\mathbb{R}^{2n}.$ Using this we prove the stronger result that $$D_{n}=\{(z_{1},z_{2},...,z_{n})\in\mathbb{C}^{n}\,|\,\mbox{There exists\,}a\in\mathbb{C}\,\,\mbox{with}\,\,(z-z_{1})(z-z_{2})...(z-z_{n})(z-a)\,\mbox{decomposable}\},$$ also has measure zero when considered a subset of $\mathbb{R}^{2n}.$ We show that for any polynomial $p$, there exists an $a\in\mathbb{C}$ such that $p(z)(z-a)$ is indecomposable, and we also examine the case of $D_{5}$ in detail. The main work of this paper studies finite Blaschke products, analytic functions on $\overline{\mathbb{D}}$ that map $\partial\mathbb{D}$ to $\partial\mathbb{D}.$ In analogy with polynomials, we discuss when a degree $n$ Blaschke product, $B,$ can be written as a composition $C\circ D$, where $C$ and $D$ are finite Blaschke products, each of degree less than $n.$ Decomposable and indecomposable are defined analogously. Our main results are divided into two sections. First, we equate a condition on the zeros of the Blaschke product with the existence of a decomposition where the right-hand factor, $D,$ has degree $2.$ We also equate decomposability of a Blaschke product, $B,$ with the existence of a Poncelet curve, whose foci are a subset of the zeros of $B,$ such that the Poncelet curve satisfies certain tangency conditions. This result is hard to apply in general, but has a very nice geometric interpretation when we desire a composition where the right-hand factor is degree 2 or 3. Our second section of finite Blaschke product results builds off of the work of Cowen in \cite{key-3}. For a finite Blaschke product $B,$ Cowen defines the so-called monodromy group, $G_{B},$ of the finite Blaschke product. He then equates the decomposability of a finite Blaschke product, $B,$ with the existence of a nontrivial partition, $\mathcal{P},$ of the branches of $B^{-1}(z),$ such that $G_{B}$ respects $\mathcal{P}$. We present an in-depth analysis of how to calculate $G_{B}$, extending Cowen's description. These methods allow us to equate the existence of a decomposition where the left-hand factor has degree 2, with a simple condition on the critical points of the Blaschke product. In addition we are able to put a condition of the structure of $G_{B}$ for any decomposable Blaschke product satisfying certain normalization conditions. The final section of this paper discusses how one can put the results of the paper into practice to determine, if a particular Blaschke product is decomposable. We compare three major algorithms. The first is a brute force technique where one searches through the zero set of $B$ for subsets which could be the zero set of $D$, exhaustively searching for a successful decomposition $B(z)=C(D(z)).$ The second algorithm involves simply examining the cardinality of the image, under $B,$ of the set of critical points of $B.$ For a degree $n$ Blaschke product, $B,$ if this cardinality is greater than $\frac{n}{2}$, the Blaschke product is indecomposable. The final algorithm attempts to apply the geometric interpretation of decomposability given by our theorem concerning the existence of a particular Poncelet curve. The final two algorithms can be implemented easily with the use of an HTML