926 resultados para Complex learning
Resumo:
~ This study focuses on the process of self-directed learning that individuals go through as they adapt to new work situations. This is a study of how one critical incident, specifically the transition from a traditional office structure to a home office structure, affected employees and what their learning process was as they adapted to the new environment. This study has 3 educational foundations: adult learning, self-directed learning, and the social context from which the learning will occur. Six women and 2 men were interviewed approximately 1 year following the transition. Analysis of the data revealed 5 themes of: impacts of the self-directed environment on participants' personal lives, their roles, skill set, productivity, and the physical environment; support offered by the organization, family, and office administration; personal development, specific learning needs, and personal skills; boundaries as they relate to family and work; and skill set and orientation requirements of new home office employees. The findings revealed the learning processes of the 8 participants. The learning processes of these participants were discussed within a theoretical framework of the learners, their immediate surroundings, and the larger social environment. The results indicated that the transition from a directed work environment to a self directed work environment is a complex, interrelated process. An element found throughout the theoretical framework is that of control. A second critical element is the need for participants to have a clearly defined work role and an opportunity to engage in discussion with peers and the community. Further findings reinforced the importance of climate and found that the physical environment is a key factor in a successful selfdirected work environment. The findings of this study revealed that no one factor makes an individual function successfully in a self-directed work environment, but that it is a complex interplay among the leamer, their immediate surroundings, and the social environment that will have the greatest impact on success. Recommendations are made which can be used to guide organizational leaders in facilitating employees' transition from a directed to a self-directed work environment. Additionally, recommendations are made for further research in the area of self-directed work environments.
Resumo:
I am a part-time graduate student who works in industry. This study is my narrative about how six workers and I describe shop-floor learning activities, that is learning activities that occur where work is done, outside a classroom. Because this study is narrative inquiry, you wilileam about me, the narrator, more than you would in a more conventional study. This is a common approach in narrative inquiry and it is important because my intentions shape the way that I tell these six workers' stories. I developed a typology of learning activities by synthesizing various theoretical frameworks. This typology categorizes shop-floor learning activities into five types: onthe- job training, participative learning, educational advertising, incidental learning, and self-directed learning. Although learning can occur in each of these activities in isolation, it is often comprised of a mixture of these activities. The literature review contains a number of cases that have been developed from situations described in the literature. These cases are here to make the similarities and differences between the types of learning activities that they represent more understandable to the reader and to ground the typology in practice as well as in theory. The findings are presented as reader's theatre, a dramatic presentation of these workers' narratives. The workers tell us that learning involves "being shown," and if this is not done properly they "learn the hard way." I found that many of their best case lean1ing activities involved on-the-job training, participative learning, incidentalleaming, and self-directed learning. Worst case examples were typically lacking in properly designed and delivered participative learning activities and to a lesser degree lacking carefully planned and delivered on-the-job training activities. Included are two reflective chapters that describe two cases: Learning "Engels" (English), and Learning to Write. In these chapters you will read about how I came to see that my own shop-floor learning-learning to write this thesis-could be enhanced through participative learning activities. I came to see my thesis supervisor as not only my instructor who directed and judged my learning activities, but also as a more experienced researcher who was there to participate in this process with me and to help me begin to enter the research community. Shop-floor learning involves learners and educators participating in multistranded learning activities, which require an organizational factor of careful planning and delivery. As with learning activities, which can be multi-stranded, so too, there can be multiple orientations to learning on the shop floor. In our stories, you will see that these six workers and I didn't exhibit just one orientation to learning in our stories. Our stories demonstrate that we could be behaviorist and cognitivist and humanist and social learners and constructivist in our orientation to learning. Our stories show that learning is complex and involves multiple strands, orientations, and factors. Our stories show that learning narratives capture the essence of learning-the learners, the educators, the learning activities, the organizational factors, and the learning orientations. Learning narratives can help learners and educators make sense of shop-floor learning.
Resumo:
In a world in which social, economic, and environmental circumstances are continuously evolving and increasingly complex, leaders face the challenging prospect of navigating their organizations through unpredictable operating conditions. Finding a way to tap into the learning capacity of the people who comprise their organizations may be the answer to adapt and to survive. This qualitative research study explored the role of leaders in building this organizational learning capacity. The literature identified three domains of personal, interpersonal, and organizational capacity for learning in an organizational setting. Interviews with three senior leaders who had successfully built learning capacity in their respective organizations revealed four elements of leader commitment: (a) to the process of building learning capacity, (b) to organizational objectives and results, (c) to personal actions and behaviours, and (d) to the people of the organization. Each of the four elements of leader commitment spans the three domains of learning capacity that can guide leaders as they build organizational learning capacity.
Resumo:
Ontario bansho is an emergent mathematics instructional strategy used by teachers working within communities of practice that has been deemed to have a transformational effect on teachers' professional learning of mathematics. This study sought to answer the following question: How does teachers' implementation of Ontario bansho within their communities of practice inform their professional learning process concerning mathematics-for-teaching? Two other key questions also guided the study: What processes support teachers' professional learning of content-for-teaching? What conditions support teachers' professional learning of content-for-teaching? The study followed an interpretive phenomenological approach to collect data using a purposive sampling of teachers as participants. The researcher conducted interviews and followed an interpretive approach to data analysis to investigate how teachers construct meaning and create interpretations through their social interactions. The study developed a model of professional learning made up of 3 processes, informing with resources, engaging with students, and visualizing and schematizing in which the participants engaged and 2 conditions, ownership and community that supported the 3 processes. The 3 processes occur in ways that are complex, recursive, nonpredictable, and contextual. This model provides a framework for facilitators and leaders to plan for effective, content-relevant professional learning by placing teachers, students, and their learning at the heart of professional learning.
Resumo:
Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).
Resumo:
La formation à distance (FAD) est de plus en plus utilisée dans le cadre de la formation des enseignants aux technologies de l’information et de la communication (TIC). Dans les pays en voie de développement, elle permet non seulement de réduire les coûts par rapport à une formation traditionnelle, mais aussi de modéliser des pratiques pédagogiques exemplaires qui permettent de maximiser le recours aux TIC. En ce sens, la formation continue des enseignants aux TIC par des cours à distance qui intègrent des forums de discussion offre plusieurs avantages pour ces pays. L’évaluation des apprentissages réalisés dans les forums reste cependant un problème complexe. Différents modèles et différentes procédures d’évaluation ont été proposés par la littérature, mais aucun n’a encore abordé spécifiquement la culture e-learning des participants telle qu’elle est définie par le modèle IntersTICES (Viens, 2007 ; Viens et Peraya, 2005). L’objectif de notre recherche est l’élaboration d’une grille opérationnelle pour l’analyse de la culture e-learning à partir des contenus de différents forums de discussion utilisés comme activité de formation dans un cours à distance. Pour développer cette grille, nous utiliserons une combinaison de modèles recensés dans la revue de littérature afin de circonscrire les principaux concepts et indicateurs à prendre en compte pour ensuite suivre les procédures relatives à l’analyse de la valeur, une méthodologie qui appelle la production d’un cahier des charges fonctionnel, la production de l’outil, puis sa mise à l’essai auprès d’experts. Cette procédure nous a permis de mettre sur pied une grille optimale, opérationnelle et appuyée par une base théorique et méthodologique solide.
Resumo:
Cette thèse présente une revue des réflexions récentes et plus traditionnelles provenant de la théorie des systèmes, de la créativité en emploi, des théories d’organisation du travail et de la motivation afin de proposer une perspective psychologique de la régulation des actions des individus au sein d’environnements de travail complexes et incertains. Des composantes de la Théorie de la Régulation de l’Action (Frese & Zapf, 1994) ainsi que de la Théorie de l’Auto-Détermination (Deci & Ryan, 2000) sont mises en relation afin d’évaluer un modèle définissant certains schémas cognitifs clés associés aux tâches individuelles et collectives en emploi. Nous proposons que ces schémas cognitifs, organisés de manière hiérarchique, jouent un rôle central dans la régulation d’une action efficace au sein d’un système social adaptatif. Nos mesures de ces schémas cognitifs sont basées sur des échelles de mesure proposées dans le cadre des recherches sur l’ambiguïté de rôle (eg. Sawyer, 1992; Breaugh & Colihan, 1994) et sont mis en relation avec des mesures de satisfaction des besoins psychologiques (Van den Broeck, Vansteenkiste, De Witte, Soenens & Lens, 2009) et du bien-être psychologique (Goldberg, 1972). Des données provenant de 153 employés à temps plein d’une compagnie de jeu vidéo ont été récoltées à travers deux temps de mesure. Les résultats révèlent que différents types de schémas cognitifs associés aux tâches individuelles et collectives sont liés à la satisfaction de différents types de besoin psychologiques et que ces derniers sont eux-mêmes liés au bien-être psychologique. Les résultats supportent également l’hypothèse d’une organisation hiérarchique des schémas cognitifs sur la base de leur niveau d’abstraction et de leur proximité avec l’exécution concrète de l’action. Ces résultats permettent de fournir une explication initiale au processus par lequel les différents types de schémas cognitifs développés en emplois et influencé par l’environnement de travail sont associés à l’attitude des employés et à leur bien-être psychologique. Les implications pratiques et théoriques pour la motivation, l’apprentissage, l’habilitation, le bien-être psychologique et l’organisation du travail dans les environnements de travail complexes et incertains sont discutés.
Resumo:
One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.
Resumo:
We are investigating how to program robots so that they learn from experience. Our goal is to develop principled methods of learning that can improve a robot's performance of a wide range of dynamic tasks. We have developed task-level learning that successfully improves a robot's performance of two complex tasks, ball-throwing and juggling. With task- level learning, a robot practices a task, monitors its own performance, and uses that experience to adjust its task-level commands. This learning method serves to complement other approaches, such as model calibration, for improving robot performance.
Resumo:
One objective of artificial intelligence is to model the behavior of an intelligent agent interacting with its environment. The environment's transformations can be modeled as a Markov chain, whose state is partially observable to the agent and affected by its actions; such processes are known as partially observable Markov decision processes (POMDPs). While the environment's dynamics are assumed to obey certain rules, the agent does not know them and must learn. In this dissertation we focus on the agent's adaptation as captured by the reinforcement learning framework. This means learning a policy---a mapping of observations into actions---based on feedback from the environment. The learning can be viewed as browsing a set of policies while evaluating them by trial through interaction with the environment. The set of policies is constrained by the architecture of the agent's controller. POMDPs require a controller to have a memory. We investigate controllers with memory, including controllers with external memory, finite state controllers and distributed controllers for multi-agent systems. For these various controllers we work out the details of the algorithms which learn by ascending the gradient of expected cumulative reinforcement. Building on statistical learning theory and experiment design theory, a policy evaluation algorithm is developed for the case of experience re-use. We address the question of sufficient experience for uniform convergence of policy evaluation and obtain sample complexity bounds for various estimators. Finally, we demonstrate the performance of the proposed algorithms on several domains, the most complex of which is simulated adaptive packet routing in a telecommunication network.
Resumo:
We present an example-based learning approach for locating vertical frontal views of human faces in complex scenes. The technique models the distribution of human face patterns by means of a few view-based "face'' and "non-face'' prototype clusters. At each image location, the local pattern is matched against the distribution-based model, and a trained classifier determines, based on the local difference measurements, whether or not a human face exists at the current image location. We provide an analysis that helps identify the critical components of our system.
Resumo:
Real-world learning tasks often involve high-dimensional data sets with complex patterns of missing features. In this paper we review the problem of learning from incomplete data from two statistical perspectives---the likelihood-based and the Bayesian. The goal is two-fold: to place current neural network approaches to missing data within a statistical framework, and to describe a set of algorithms, derived from the likelihood-based framework, that handle clustering, classification, and function approximation from incomplete data in a principled and efficient manner. These algorithms are based on mixture modeling and make two distinct appeals to the Expectation-Maximization (EM) principle (Dempster, Laird, and Rubin 1977)---both for the estimation of mixture components and for coping with the missing data.
Resumo:
Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task
Resumo:
Leaders have the task of developing future strategy while being consciously engaged in executing current strategy and mapping landmarks, pathways and obstacles which they meet asthey endeavor to traverse challenging, rapidly evolving terrain. In an era in which there is a global leadership credibility crisis, business as usual is no longer an option in the pursuit of the longer-term survival of any organization. The leadership approach to complexity outlined here is based on learning to achieve results through experimentation, learning, and reflection. A case study is presented that illustrates the application of this approach. In this paper, the reader is first introduced to a brief overview of some key definitions and debates, shifting leadership boundaries, and emerging accountabilities and opportunities. This is followed by a summary of some of the key topics and issues that face current and future leaders.
Resumo:
Darrerament, l'interès pel desenvolupament d'aplicacions amb robots submarins autònoms (AUV) ha crescut de forma considerable. Els AUVs són atractius gràcies al seu tamany i el fet que no necessiten un operador humà per pilotar-los. Tot i això, és impossible comparar, en termes d'eficiència i flexibilitat, l'habilitat d'un pilot humà amb les escasses capacitats operatives que ofereixen els AUVs actuals. L'utilització de AUVs per cobrir grans àrees implica resoldre problemes complexos, especialment si es desitja que el nostre robot reaccioni en temps real a canvis sobtats en les condicions de treball. Per aquestes raons, el desenvolupament de sistemes de control autònom amb l'objectiu de millorar aquestes capacitats ha esdevingut una prioritat. Aquesta tesi tracta sobre el problema de la presa de decisions utilizant AUVs. El treball presentat es centra en l'estudi, disseny i aplicació de comportaments per a AUVs utilitzant tècniques d'aprenentatge per reforç (RL). La contribució principal d'aquesta tesi consisteix en l'aplicació de diverses tècniques de RL per tal de millorar l'autonomia dels robots submarins, amb l'objectiu final de demostrar la viabilitat d'aquests algoritmes per aprendre tasques submarines autònomes en temps real. En RL, el robot intenta maximitzar un reforç escalar obtingut com a conseqüència de la seva interacció amb l'entorn. L'objectiu és trobar una política òptima que relaciona tots els estats possibles amb les accions a executar per a cada estat que maximitzen la suma de reforços totals. Així, aquesta tesi investiga principalment dues tipologies d'algoritmes basats en RL: mètodes basats en funcions de valor (VF) i mètodes basats en el gradient (PG). Els resultats experimentals finals mostren el robot submarí Ictineu en una tasca autònoma real de seguiment de cables submarins. Per portar-la a terme, s'ha dissenyat un algoritme anomenat mètode d'Actor i Crític (AC), fruit de la fusió de mètodes VF amb tècniques de PG.