963 resultados para Color morph
Resumo:
A voltage-controlled tunable two-color infrared detector with photovoltaic (PV) and photoconductive (PC) dual-mode operation at 3-5 mu m and 8-14 mu m using GaAs/AlAs/AlGaAs double barrier quantum wells (DBQWs) and bound-to-continuum GaAs/AlGaAs quantum wells is demonstrated. The photoresponse peak of the photovoltaic GaAs/AlAs/GaAlAs DBQWs is at 5.3 mu m, and that of the photoconductive GaAs/GaAlAs quantum wells is at 9.0 mu m. When the two-color detector is under a zero bias, the spectral response at 5.3 mu m is close to saturate and the peak detectivity at 80 K can reach 1.0X10(11) cmHz(1/2)/W, while the spectral photoresponsivity at 9.0 mu m is absolutely zero completely. When the external voltage of the two-color detector is changed to 2.0 V, the spectral photoresponsivity at 5.3 mu m becomes zero while the spectral photoresponsivity at 9.0 mu m increases comparable to that at 5.3 mu m under zero bias, and the peak detectivity (9.0 mu m) at 80 K can reach 1.5X10(10) cmHz(1/2)/W. Strictly speaking, this is a real bias-controlled tunable two-color infrared photodetector. We have proposed a model based on the PV and PC dual-mode operation of stacked two-color QWIPs and the effects of tunneling resonance with narrow energy width of photoexcited electrons in DBQWs, which can explain qualitatively the voltage-controlled tunable behavior of the photoresponse of the two-color infrared photodetector. (C) 1996 American Institute of Physics.
Resumo:
The effect of C-12(6+) heavy ions bombardment on mutagenesis in Salvia splendens Ker-Gawl. was studied. Dose-response studies indicated that there was a peak of malformation frequency of S. splendens at 200 Gy. Abnormal leaf mutants of the bileaf, trileaf and tetraleaf conglutination were selected. Meanwhile, a bicolor flower chimera with dark red and fresh red flower was isolated in M1 generation of S. splendens. Random amplified polymorphic DNA (RAPD) analysis demonstrated that DNA variations existed among the wild-type, fresh and dark red flower shoots of the chimera. The dark red flower shoots of the chimera were conserved and cultivated at a large-scale through micropropagation. MS supplemented with 2.0 mg/L BA and 0.3 mg/L NAA was the optimal medium in which the maximum proliferation ratio (5.2-fold) and rooting rate (88%) were achieved after 6 weeks. Our findings provide an important method to improve the ornamental quality of S. splendens.
Resumo:
Single crystals of alpha-alumina were irradiated at room temperature with 1.157 (GeVFe)-Fe-56, 1.755 (GeVXe)-Xe-136 and 2.636 (GeVU)-U-238 ions to fluences range from 8.7 x 10(9) to 6 x 10(12) ions/cm(2). Virgin and irradiated samples were investigated by ultraviolet visible absorption measurements. The investigation reveals the presence of various color centers (F, F+, F-2(2+), F-2(+) and F-2 centers) appearing in the irradiated samples. It is found that the ratio of peak absorbance of F-2 to F centers increases with the increase of the atomic numbers of the incident ions from Fe, Xe to U ions, so do the absorbance ratio of F-2(2+) to F+ centers and of large defect cluster to F centers, indicating that larger defect clusters are preferred to be produced under heavier ion irradiation. Largest color center production cross-section was found for the U ion irradiation. The number density of single anion vacancy scales better with the energy deposition through processes of nuclear stopping, indicating that the nuclear energy loss processes determines the production of F-type defects in heavy ion irradiated alpha-alumina.
Resumo:
Deconfinement phase transition and condensation of Goldstone bosons in neutron star matter are investigated in a chiral hadronic model (also referred as to the FST model) for the hadronic phase (HP) and in the color-flavor-locked (CFL) quark model for the deconfined quark phase. It is shown that the hadronic-CFL mixed phase (MP) exists in the center of neutron stars with a small bag constant, while the CFL quark matter cannot appear in neutron stars when a large bag constant is taken. Color superconductivity softens the equation of state (EOS) and decreases the maximum mass of neutron stars compared with the unpaired quark matter. The K-0 condensation in the CFL phase has no remarkable contribution to the EOS and properties of neutron star matter. The EOS and the properties of neutron star matter are sensitive to the bag constant B, the strange quark mass m(s) and the color superconducting gap Delta. Increasing B and m(s) or decreasing Delta can stiffen the EOS which results in the larger maximum masses of neutron stars.
Resumo:
Silica glass samples were implanted with 1.157 GeV Fe-56 and 1.755 GeV Xe-136 ions to fluences range from 1 x 10(11) to 3.8 x 10(12) ions/cm(2). Virgin and irradiated samples were investigated by ultraviolet (UV) absorption from 3 to 6.4 eV and photoluminescence (PL) spectroscopy. The UV absorption investigation reveals the presence of various color centers (E' center, non-bridging oxygen hole center (NBOHC) and ODC(II)) appearing in the irradiated samples. It is found that the concentration of all color centers increase with the increase of fluence and tend to saturation at high fluence. Furthermore the concentration of E' center and that of NBOHC is approximately equal and both scale better with the energy deposition through processes of electronic stopping, indicating that E' center and NBOHC are mainly produced simultaneously from the scission of strained Si-O-Si bond by electronic excitation effects in heavy ion irradiated silica glass. The PL measurement shows three emissions peaked at about 4.28 eV (alpha band), 3.2 eV (beta band) and 2.67 eV (gamma band) when excited at 5 eV. The intensities of alpha and gamma bands increase with the increase of fluence and tend to saturation at high fluence. The intensity of beta band is at its maximum in virgin silica glass and it is reduced on increasing the ions fluence. It is further confirmed that nuclear energy loss processes determine the production of alpha and gamma bands and electronic energy loss processes determine the bleaching of beta band in heavy ion irradiated silica glass. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
A new algorithm has been developed for simultaneous retrieval of aerosol optical properties and chlorophyll concentrations in case I waters. This algorithm is based on an improved complete model for the inherent optical properties and accurate simulations of the radiative transfer process in the coupled atmosphere-ocean system. It has been tested against synthetic radiances generated for the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) channels and has been shown to be robust and accurate. A unique feature of this algorithm is that it uses the measured radiances in both near-IR and visible channels to find that combination of chlorophyll concentration and aerosol optical properties that minimizes the error across the spectrum. Thus the error in the retrieved quantities can be quantified.
Resumo:
Both commercial and scientific applications often need to transform color images into gray-scale images, e. g., to reduce the publication cost in printing color images or to help color blind people see visual cues of color images. However, conventional color to gray algorithms are not ready for practical applications because they encounter the following problems: 1) Visual cues are not well defined so it is unclear how to preserve important cues in the transformed gray-scale images; 2) some algorithms have extremely high time cost for computation; and 3) some require human-computer interactions to have a reasonable transformation. To solve or at least reduce these problems, we propose a new algorithm based on a probabilistic graphical model with the assumption that the image is defined over a Markov random field. Thus, color to gray procedure can be regarded as a labeling process to preserve the newly well-defined visual cues of a color image in the transformed gray-scale image. Visual cues are measurements that can be extracted from a color image by a perceiver. They indicate the state of some properties of the image that the perceiver is interested in perceiving. Different people may perceive different cues from the same color image and three cues are defined in this paper, namely, color spatial consistency, image structure information, and color channel perception priority. We cast color to gray as a visual cue preservation procedure based on a probabilistic graphical model and optimize the model based on an integral minimization problem. We apply the new algorithm to both natural color images and artificial pictures, and demonstrate that the proposed approach outperforms representative conventional algorithms in terms of effectiveness and efficiency. In addition, it requires no human-computer interactions.
Resumo:
Nanocrystalline Tm3+-doped La2O3 phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction, field-emission scanning electron microscopy, photoluminescence, and cathodoluminescence spectra were utilized to characterize the synthesized phosphors. Under the excitation of UV light (234 nm) and low-voltage electron beams (1-3 kV), the Tm3+-doped La2O3 phosphors show the characteristic emissions of Tm3+(D-1(2), (1)G(4)-F-3(4), H-3(6) transitions).
Resumo:
A new and synthetically versatile strategy has been developed for the phosphorescence color tuning of cyclometalated iridium phosphors by simple tailoring of the phenyl ring of ppy (Hppy=2-phenylpyridine) with various main-group moieties in [Ir(ppy-X)(2)(acac)] (X=B(Mes)(2), SiPh3, GePh3, NPh2, POPh2, OPh, SPh, SO2Ph). This can be achieved by shifting the charge-transfer character from the pyridyl groups in some traditional iridium ppy-type complexes to the electron-withdrawing main-group moieties and these assignments were supported by theoretical calculations.
Resumo:
The synthesis, structures, photophysics, electrochemistry and electrophosphorescent properties of new red phosphorescent cyclometalated iridium(III) isoquinoline complexes, bearing 9-arylcarbazolyl chromophores, are reported. The functional properties of these red phosphors correlate well with the results of density functional theory calculations
Resumo:
The synthesis, structures, photophysics, electrochemistry and electrophosphorescent properties of new red phosphorescent cyclometalated iridium(III) isoquinoline complexes, bearing 9-arylcarbazolyl chromophores, are reported. The functional properties of these red phosphors correlate well with the results of density functional theory calculations. The highest occupied molecular orbital levels of these complexes are raised by the integration of a carbazole unit to the iridium isoquinoline core so that the hole-transporting ability is improved in the resulting complexes relative to those with I-phenylisoquinoline ligands. All of the complexes are highly thermally stable and emit an intense red light at room temperature with relatively short lifetimes that are beneficial for highly efficient organic light-emitting diodes (OLEDs).
Resumo:
Two new stepladder conjugated polymers, that is, poly(7,7,15,15-tetraoctyldinaphtho[1,2-a:1',2'-g]-s-indacene) (PONSI) and poly(7,7,15,15-tetra(4-octylphenyl)dinaphtho[1,2-a:1',2'-g]-s-indacene) (PANSI) with alkyl and aryl substituents, respectively, have been synthesized and characterized. In comparison with poly(indenofluorene)s, both polymers have extended conjugation at the direction perpendicular to the polymer backbone because of the introduction of naphthalene moieties. The emission color of the polymers in film state is strongly dependent on the substituents. While PONSI emits at a maximum of 463 nm, PANSI with the same backbone but aryl substituents displays dramatically redshifted emission with a maximum at 494 nm.