945 resultados para Cluster analysis


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rain acidity may be ascribed to emissions from power station stacks, as well as emissions from other industry, biomass burning, maritime influences, agricultural influences, etc. Rain quality data are available for 30 sites in the South African interior, some from as early as 1985 for up to 14 rainfall seasons, while others only have relatively short records. The article examines trends over time in the raw and volume weighted concentrations of the parameters measured, separately for each of the sites for which sufficient data are available. The main thrust, however, is to examine the inter-relationship structure between the concentrations within each rain event (unweighted data), separately for each site, and to examine whether these inter-relationships have changed over time. The rain events at individual sites can be characterized by approximately eight combinations of rainfall parameters (or rain composition signatures), and these are common to all sites. Some sites will have more events from one signature than another, but there appear to be no signatures unique to a single site. Analysis via factor and cluster analysis, with a correspondence analysis of the results, also aid interpretation of the patterns. This spatio-temporal analysis, performed by pooling all rain event data, irrespective of site or time period, results in nine combinations of rainfall parameters being sufficient to characterize the rain events. The sites and rainfall seasons show patterns in these combinations of parameters, with some combinations appearing more frequently during certain rainfall seasons. In particular, the presence of the combination of low acetate and formate with high magnesium appears to be increasing in the later rainfall seasons, as does this combination together with calcium, sodium, chloride, potassium and fluoride. As expected, sites close together exhibit similar signatures. Copyright © 2002 John Wiley & Sons, Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Descriptive herd variables (DVHE) were used to explain genotype by environment interactions (G x E) for milk yield (MY) in Brazilian and Colombian production environments and to develop a herd-cluster model to estimate covariance components and genetic parameters for each herd environment group. Data consisted of 180,522 lactation records of 94,558 Holstein cows from 937 Brazilian and 400 Colombian herds. Herds in both countries were jointly grouped in thirds according to 8 DVHE: production level, phenotypic variability, age at first calving, calving interval, percentage of imported semen, lactation length, and herd size. For each DVHE, REML bivariate animal model analyses were used to estimate genetic correlations for MY between upper and lower thirds of the data. Based on estimates of genetic correlations, weights were assigned to each DVHE to group herds in a cluster analysis using the FASTCLUS procedure in SAS. Three clusters were defined, and genetic and residual variance components were heterogeneous among herd clusters. Estimates of heritability in clusters 1 and 3 were 0.28 and 0.29, respectively, but the estimate was larger (0.39) in Cluster 2. The genetic correlations of MY from different clusters ranged from 0.89 to 0.97. The herd-cluster model based on DVHE properly takes into account G x E by grouping similar environments accordingly and seems to be an alternative to simply considering country borders to distinguish between environments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The contents of some nutrients in 35 Brazilian green and roasted coffee samples were determined by flame atomic absorption spectrometry (Ca, Mg, Fe, Cu, Mn, and Zn), flame atomic emission photometry (Na and K) and Kjeldahl (N) after preparing the samples by wet digestion procedures using i) a digester heating block and ii) a conventional microwave oven system with pressure and temperature control. The accuracy of the procedures was checked using three standard reference materials (National Institute of Standards and Technology, SRM 1573a Tomato Leaves, SRM 1547 Peach Leaves, SRM 1570a Trace Elements in Spinach). Analysis of data after application of t-test showed that results obtained by microwave-assisted digestion were more accurate than those obtained by block digester at 95% confidence level. Additionally to better accuracy, other favorable characteristics found were lower analytical blanks, lower reagent consumption, and shorter digestion time. Exploratory analysis of results using Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) showed that Na, K, Ca, Cu, Mg, and Fe were the principal elements to discriminate between green and roasted coffee samples. ©2007 Sociedade Brasileira de Química.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Uterine Leiomyomas (ULs) are the most common benign tumours affecting women of reproductive age. ULs represent a major problem in public health, as they are the main indication for hysterectomy. Approximately 40-50% of ULs have non-random cytogenetic abnormalities, and half of ULs may have copy number alterations (CNAs). Gene expression microarrays studies have demonstrated that cell proliferation genes act in response to growth factors and steroids. However, only a few genes mapping to CNAs regions were found to be associated with ULs. Methodology: We applied an integrative analysis using genomic and transcriptomic data to identify the pathways and molecular markers associated with ULs. Fifty-one fresh frozen specimens were evaluated by array CGH (JISTIC) and gene expression microarrays (SAM). The CONEXIC algorithm was applied to integrate the data. Principal Findings: The integrated analysis identified the top 30 significant genes (P<0.01), which comprised genes associated with cancer, whereas the protein-protein interaction analysis indicated a strong association between FANCA and BRCA1. Functional in silico analysis revealed target molecules for drugs involved in cell proliferation, including FGFR1 and IGFBP5. Transcriptional and protein analyses showed that FGFR1 (P = 0.006 and P<0.01, respectively) and IGFBP5 (P = 0.0002 and P = 0.006, respectively) were up-regulated in the tumours when compared with the adjacent normal myometrium. Conclusions: The integrative genomic and transcriptomic approach indicated that FGFR1 and IGFBP5 amplification, as well as the consequent up-regulation of the protein products, plays an important role in the aetiology of ULs and thus provides data for potential drug therapies development to target genes associated with cellular proliferation in ULs. © 2013 Cirilo et al.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A data set based on 50 studies including feed intake and utilization traits was used to perform a meta-analysis to obtain pooled estimates using the variance between studies of genetic parameters for average daily gain (ADG); residual feed intake (RFI); metabolic body weight (MBW); feed conversion ratio (FCR); and daily dry matter intake (DMI) in beef cattle. The total data set included 128 heritability and 122 genetic correlation estimates published in the literature from 1961 to 2012. The meta-analysis was performed using a random effects model where the restricted maximum likelihood estimator was used to evaluate variances among clusters. Also, a meta-analysis using the method of cluster analysis was used to group the heritability estimates. Two clusters were obtained for each trait by different variables. It was observed, for all traits, that the heterogeneity of variance was significant between clusters and studies for genetic correlation estimates. The pooled estimates, adding the variance between clusters, for direct heritability estimates for ADG, DMI, RFI, MBW and FCR were 0.32 +/- 0.04, 0.39 +/- 0.03, 0.31 +/- 0.02, 0.31 +/- 0.03 and 0.26 +/- 0.03, respectively. Pooled genetic correlation estimates ranged from -0.15 to 0.67 among ADG, DMI, RFI, MBW and FCR. These pooled estimates of genetic parameters could be used to solve genetic prediction equations in populations where data is insufficient for variance component estimation. Cluster analysis is recommended as a statistical procedure to combine results from different studies to account for heterogeneity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Concentrations of 39 organic compounds were determined in three fractions (head, heart and tail) obtained from the pot still distillation of fermented sugarcane juice. The results were evaluated using analysis of variance (ANOVA), Tukey's test, principal component analysis (PCA), hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA). According to PCA and HCA, the experimental data lead to the formation of three clusters. The head fractions give rise to a more defined group. The heart and tail fractions showed some overlap consistent with its acid composition. The predictive ability of calibration and validation of the model generated by LDA for the three fractions classification were 90.5 and 100%, respectively. This model recognized as the heart twelve of the thirteen commercial cachacas (92.3%) with good sensory characteristics, thus showing potential for guiding the process of cuts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The main objective of this study was to apply three-mode principal component analysis to assess the triple interaction (genotype x location x feeding) on direct genetic value for weight at 205 days of age. We used 60 sires with offspring in three regions of northeastern Brazil (Maranhao, Mata and Agreste, and Reconcavo Baiano) and raised on a pasture regime or with supplementation. There was no interaction between genotype and location, but there was a correlation between genotype and direct effect of feeding. The use of sires should be dictated according to the system of rearing of their offspring.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study performed an exploratory analysis of the anthropometrical and morphological muscle variables related to the one-repetition maximum (1RM) performance. In addition, the capacity of these variables to predict the force production was analyzed. 50 active males were submitted to the experimental procedures: vastus lateralis muscle biopsy, quadriceps magnetic resonance imaging, body mass assessment and 1RM test in the leg-press exercise. K-means cluster analysis was performed after obtaining the body mass, sum of the left and right quadriceps muscle cross-sectional area (Sigma CSA), percentage of the type II fibers and the 1RM performance. The number of clusters was defined a priori and then were labeled as high strength performance (HSP1RM) group and low strength performance (LSP1RM) group. Stepwise multiple regressions were performed by means of body mass, Sigma CSA, percentage of the type II fibers and clusters as predictors' variables and 1RM performance as response variable. The clusters mean +/- SD were: 292.8 +/- 52.1 kg, 84.7 +/- 17.9 kg, 19249.7 +/- 1645.5 mm(2) and 50.8 +/- 7.2% for the HSP1RM and 254.0 +/- 51.1 kg, 69.2 +/- 8.1 kg, 15483.1 +/- 1 104.8 mm(2) and 51.7 +/- 6.2 %, for the LSP1RM in the 1RM, body mass, Sigma CSA and muscle fiber type II percentage, respectively. The most important variable in the clusters division was the Sigma CSA. In addition, the Sigma CSA and muscle fiber type II percentage explained the variance in the 1RM performance (Adj R-2 = 0.35, p = 0.0001) for all participants and for the LSP1RM (Adj R-2 = 0.25, p = 0.002). For the HSP1RM, only the Sigma CSA was entered in the model and showed the highest capacity to explain the variance in the 1RM performance (Adj R-2 = 0.38, p = 0.01). As a conclusion, the muscle CSA was the most relevant variable to predict force production in individuals with no strength training background.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Quality of fresh-cut carambola (Averrhoa carambola L) is related to many chemical and biochemical variables especially those involved with softening and browning, both influenced by storage temperature. To study these effects, a multivariate analysis was used to evaluate slices packaged in vacuum-sealed polyolefin bags, and stored at 2.5 degrees C, 5 degrees C and 10 degrees C, for up to 16 d. The quality of slices at each temperature was correlated with the duration of storage, O(2) and CO(2) concentration in the package, physical chemical constituents, and activity of enzymes involved in softening (PG) and browning (PPO) metabolism. Three quality groups were identified by hierarchical cluster analysis, and the classification of the components within each of these groups was obtained from a principal component analysis (PCA). The characterization of samples by PCA clearly distinguished acceptable and non-acceptable slices. According to PCA, acceptable slices presented higher ascorbic acid content, greater hue angles ((o)h) and final lightness (L-5) in the first principal component (PC1). On the other hand, non-acceptable slices presented higher total pectin content. PPO activity in the PC1. Non-acceptable slices also presented higher soluble pectin content, increased pectin solubilisation and higher CO(2) concentration in the second principal component (PC2) whereas acceptable slices showed lower total sugar content. The hierarchical cluster and PCA analyses were useful for discriminating the quality of slices stored at different temperatures. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Portable system of energy dispersive X-ray fluorescence was used to determine the elemental composition of 68 pottery fragments from Sambaqui do Bacanga, an archeological site in Sao Luis, Maranhao, Brazil. This site was occupied from 6600 BP until 900 BP. By determining the element chemical composition of those fragments, it was possible to verify the existence of engobe in 43 pottery fragments. Obtained from two-dimensional graphs and hierarchical cluster analysis performed in fragments of stratigraphies from surface and 113-cm level, and 10 to 20, 132 and 144-cm level, it was possible to group these fragments in five distinct groups, according to their stratigraphies. The results of data grouping (two-dimensional graphics) are in agreement with hierarchical cluster analysis by Ward method. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Studies involving amplified fragment length polymorphism (cDNA-AFLP) have often used polyacrylamide gels with radiolabeled primers in order to establish best primer combinations, to analyze, and to recover transcript-derived fragments. Use of automatic sequencer to establish best primer combinations is convenient, because it saves time, reduces costs and risks of contamination with radioactive material and acrylamide, and allows objective band-matching and more precise evaluation of transcript-derived fragments intensities. This study aimed at examining the gene expression of commercial cultivars of P. guajava subjected to water and mechanical injury stresses, combining analyses by automatic sequencer and fluorescent kits for polyacrylamide gel electrophoresis. Firstly, 64 combinations of EcoRI and MseI primers were tested. Ten combinations with higher number of polymorphic fragments were then selected for transcript-derived fragments recovering and cluster analysis, involving 45 saplings of P. guajava. Two groups were obtained, one composed by the control samplings, and another formed by samplings undergoing stress, with no clear distinction between stress treatments. The results revealed the convenience of using a combination of automatic sequencer and fluorescent kits for polyacrylamide gel electrophoreses to examine gene expression profiles. The Unweighted Pair Group Method with Arithmetic Mean analysis using Euclidean distances points out a similar induced response mechanism of P. guajava undergoing water stress and mechanical injury.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Il distretto è un luogo relazionale dinamico dove le imprese danno luogo a differenti comportamenti economici di vario genere e natura, cooperando in un certo senso per lo sviluppo e la crescita del distretto stesso. In un primo momento di formazione del distretto si sono delineati comportamenti di tipo path dependent per vantaggi economici dovuti alla distribuzione delle imprese nel territorio, ma con il tempo si sono cominciati ad avere comportamenti espansionistici differenti sia dall'interno che dall'esterno del distretto influendo direttamente sulla struttura del stesso. É ragionevole dunque pensare che gli attori guardino al rapporto “locale/globale” con una sorta di "strabismo", da un lato leggendo il distretto (dall’interno come dall’esterno) come un luogo privilegiato per la formazione di economie di prossimità, dall’altro puntando a disporre le catene produttive nello spazio globale, alla ricerca dei vantaggi derivanti da un minor costo del lavoro o dalla immediata prossimità dei mercati di sbocco. il distretto viene dunque attraversato da dinamiche che lo globalizzano ma, al contempo, ne preservano (almeno per ora) la specificità. Non è più possibile leggere la sua forma economica solo nella logica della embeddedness, e non sarebbe certo corretto farlo solo in chiave di openness. Si tratta dunque di interrogarsi sul rapporto più di integrazione/complementarità che di contrapposizione fra openness ed embeddedness. In questa tesi verrà descritto un metodo d'approccio per dare un valore al fenomeno di Openness e Embeddedness presente nel distretto partendo da un dataset di dati relazionali ricavati da due database economici Amadeus e Aida. Non essendo possibile trovare pubblicamente dati sulle reti di fornitura delle singole aziende, siamo partiti dai dati relazionali di cinque aziende “seme”, ed attraverso una ricerca ricorsiva nelle relazioni di azionariato/partecipazione, siamo riusciti ad ottenere un campione di analisi che ci permette di mettere in luce tramite la custer analysis le principali tipologie di reti di imprese presenti nel distretto ed estese nello spazio globale.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Analysts, politicians and international players from all over the world look at China as one of the most powerful countries on the international scenario, and as a country whose economic development can significantly impact on the economies of the rest of the world. However many aspects of this country have still to be investigated. First the still fundamental role played by Chinese rural areas for the general development of the country from a political, economic and social point of view. In particular, the way in which the rural areas have influenced the social stability of the whole country has been widely discussed due to their strict relationship with the urban areas where most people from the countryside emigrate searching for a job and a better life. In recent years many studies have mostly focused on the urbanization phenomenon with little interest in the living conditions in rural areas and in the deep changes which have occurred in some, mainly agricultural provinces. An analysis of the level of infrastructure is one of the main aspects which highlights the principal differences in terms of living conditions between rural and urban areas. In this thesis, I first carried out the analysis through the multivariate statistics approach (Principal Component Analysis and Cluster Analysis) in order to define the new map of rural areas based on the analysis of living conditions. In the second part I elaborated an index (Living Conditions Index) through the Fuzzy Expert/Inference System. Finally I compared this index (LCI) to the results obtained from the cluster analysis drawing geographic maps. The data source is the second national agricultural census of China carried out in 2006. In particular, I analysed the data refer to villages but aggregated at province level.