435 resultados para Clostridium histolyticum
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In order to assess the occurrence and distribution of spores and toxins of Clostridium botulinum types C and D in three farms in Cocalinho, at the Araguaia River valley, State of Mato Grosso, Brazil, we analyzed sediment samples from 40 water holes, soil and cattle feces, collected around water holes. Sediments were analyzed by direct method, whilst feces, soil and also sediment samples were individually analyzed by indirect method. The detection of spores and botulinum toxins in the filtered material was performed by bioassay in Swiss Webster mice strain, as well as the serum-neutralization of the positive materials for typing. Samples of cattle feces showed the largest positive rate for C. botulinum, with 25/40 (62.5%), followed by soil, 12/40 (30%), and by sediment, 13/40 (32.5%). From the 40 cattle feces samples, 25 (62.00%) were positive for Clostridium botulinum; six samples were identified as type C, other six as type D, and 13 samples were classified as CD complex. From the equal number (40) of soil samples, 12 (30%) were positive for C. botulinum; two samples were identified as type C, other three as type D, and seven samples were classified as CD complex. Regarding the 40 sediment samples, 13 (32.5%) were positive for C. botulinum; two samples were identified as type C, other three as type D, and eight samples were classified as CD complex. No botulism toxin was detected by indirect method.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Clostridia are uncommon causes of pleuropneumonia in wildlife In human and domestic animals,different hemorrhagic pneumonia with involvement of the pleura. In livestock, most cases are associated with sudden changes of diet, iatrogenic lesionscaused by invasive procedures such as thoracente thoracotomy, or traumatic percutaneous introduction of the microorganism.The clinical course of pleuropneumonia by clostridia infections may be very variable, although usually are associated with hyperacute or acute course and high mortality. The pr necrotizing pneumonia and sepsis caused by hyperacute fatal course, highlighting clinical, epidemiological, microbiological, and histopathological aspects.
Resumo:
This study determined the ability of psychrotrophic Clostridium strains isolated from vacuum-packaged beefs and abattoir environments to cause 'blown-pack' spoilage of vacuum-packaged beef stored at 2 and 15 degrees C. The influence of shrinking temperatures (83, 84 and 87 degrees C) and vacuum pressure (6 and 9 mbar) on the occurrence of such spoilage as well as the effects of simulated transportation (500 km) on the integrity of packages was determined. At 15 degrees C and 2 degrees C, twelve and six strains caused 'blown-pack' spoilage, respectively. The combination of vacuum pressure (9 mbar) combined with shrinking temperature (87 degrees C) retarded the occurrence of spoilage. The simulated transportation under the experimental conditions did not affect the integrity of packages. More studies that assess the factors that may contribute for the occurrence of 'blown-pack' spoilage should be performed to avoid the occurrence of such spoilage during its shelf-life. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Clostridium perfringens is an anaerobic Gram-positive bacterium known as common pathogen for humans, for domestic and wildlife animals. Although infections caused by C. perfringens type C and A in swine are well studied, just a few reports describe the genetic relationship among strains in the epidemiological chain of swine clostridioses, as well as the presence of the microorganism in the slaughterhouses. The aim of the present study was to isolate C. perfringens from feces and carcasses from swine slaughterhouses, characterize the strains in relation to the presence of enterotoxin, alpha, beta, epsilon, iota and beta-2 toxins genes. using polymerase chain reaction (PCR) and comparing strains by means of Pulsed field gel electrophoresis (PFGE). Clostridium perfringens isolation frequencies in carcasses and finishing pig intestines were of 58.8% in both types of samples. According to the polymerase chain reaction assay, only, alfa toxin was detected, being all isolates also negative to enterotoxin and beta2 toxin. Through PFGE technique, the strains were characterized in 35 pulsotypes. In only one pulsotype, the isolate from carcass sample was grouped with fecal isolate of the same animal, suggesting that the risk of cross-contamination was low. Despite the high prevalence of C. perfringens in swine carcasses from the slaughterhouses assessed, the risk of food poisoning to Brazilian pork consumers is low, since all strains were negative to cpe-gene, codifying enterotoxin.
Resumo:
Clostridium perfringens is an anaerobic Gram-positive bacterium known as common pathogen for humans, for domestic and wildlife animals. Although infections caused by C. perfringens type C and A in swine are well studied, just a few reports describe the genetic relationship among strains in the epidemiological chain of swine clostridioses, as well as the presence of the microorganism in the slaughterhouses. The aim of the present study was to isolate C. perfringens from feces and carcasses from swine slaughterhouses, characterize the strains in relation to the presence of enterotoxin, alpha, beta, epsilon, iota and beta-2 toxins genes, using polymerase chain reaction (PCR) and comparing strains by means of Pulsed field gel electrophoresis (PFGE). Clostridium perfringens isolation frequencies in carcasses and finishing pig intestines were of 58.8% in both types of samples. According to the polymerase chain reaction assay, only alfa toxin was detected, being all isolates also negative to enterotoxin and beta2 toxin. Through PFGE technique, the strains were characterized in 35 pulsotypes. In only one pulsotype, the isolate from carcass sample was grouped with fecal isolate of the same animal, suggesting that the risk of cross-contamination was low. Despite the high prevalence of C. perfringens in swine carcasses from the slaughterhouses assessed, the risk of food poisoning to Brazilian pork consumers is low, since all strains were negative to cpe-gene, codifying enterotoxin.
Resumo:
Im tcdA-Gen des Clostridium difficile Stammes C34 wurde eine Insertion mit einer Größe von 1975 bp lokalisiert. Der als CdISt1 bezeichneten Insertion konnten charakteristische Merkmale von Gruppe I Introns und von Insertionselementen zugewiesen werden. Dem im 5 Bereich gelegenen Anteil ließen sich die Intron-spezifischen Eigenschaften zuordnen, im 3 Anteil wurden zwei offene Leseraster gefunden, die hohe Homologien zu Transposasen der IS605 Familie hatten. Funktionelle Analysen belegten die Spleißaktivität des chimären Ribozymes. CdISt1 konnte in mehren Kopien in allen untersuchten C. difficile Stämmen nachgewiesen werden. In anderen clostridialen Spezies konnte das Gruppe I Intron bislang nicht vorgefunden werden. Der Integrationsort in C. difficile war in allen untersuchten Fällen immer ein offenes Leseraster. Bislang waren Gruppe I Introns noch nie in bakteriellen offenen Leserastern beschrieben worden. Es kann angenommen werden, dass der chimäre Aufbau des Ribozymes die Integration in bakterielle offene Leseraster ermöglicht. Dabei wäre für die Spleißaktivität der Gruppe I Intron Anteil maßgeblich, die Mobilität würde über den IS Element Anteil vermittelt. Im Rahmen der Dissertationsarbeit konnten erste experimentelle Hinweise erbracht werden, dass das chimäre Ribozym an der evolution clostridialer Proteine beteiligt sein kann, wovon seinen Wirt C. difficile entsprechend profitieren würde.An insertion of 1975 bp is situated in the tcdA-gene of Clostridium difficile strain C34. The insertion was designated as CdISt1 and it had characteristics of group I introns and insertion elements. The group I characteristcs could be found in the 5 area of the genetic element, in the 3 area two open reading frames were located with high homologies to transposases of the IS605 family. Functional studies could proof the splicing activity of the ribozyme. CdISt1 could be found in several copies in all C. difficile strains examined so far. It was absent in other examined clostridial species. In all cases, the integration site in C. difficile was an open reading frame. Up to now, group I introns never were discovered in bacterial open reading frames. It can be assumed that the chimeric characteristics of the ribozyme permit an integration in bacterial open reading frames. The group I intron part would be responsible of the splicing activity, the IS element part could mediate the mobility of the genetic element. First experimental evidences point to a possible involvement of the chimeric ribozyme in the evolution of clostridial proteins, so the host C. difficile could benefit from its presence.
Resumo:
Clostridium difficile, der Auslöser der nosokomialen Antibiotika-assoziierten Durchfälle und der Pseudomembranösen Kolitis, besitzt zwei Hauptvirulenzfaktoren: die Toxine A und B. In vorangegangenen Veröffentlichungen wurde gezeigt, dass Toxin B durch einen zytosolischen Faktor der eukaryotischen Zielzelle während des Aufnahmeweges in die Zelle gespalten wird. Nur die N-terminale katalytische Domäne erreicht das Zytosol. Hierbei wurde davon ausgegangen, dass eine Protease der Zielzelle die Spaltung katalysiert. In dieser Arbeit konnte gezeigt werden, dass die Spaltung von Toxin B ein intramolekularer Prozess ist, der zytosolisches Inositolphosphat der Zielzelle als Kofaktor zur Aktivierung der intrinsischen Protease benötigt. Die Freisetzung der katalytischen Domäne durch Inositolphosphat-induzierte Spaltung ist nicht nur das Prinzip des Clostridium difficile Toxin B sondern auch des Toxin A, als auch des alpha Toxin von Clostridium novyi und das Letale Toxin von Clostridium sordellii. Der kovalente Inhibitor von Aspartatproteasen 1,2-epoxy-3-(p-nitrophenoxy)propan (EPNP), wurde dazu verwendet die intrinsische Protease von Toxin B zu blockieren und ermöglichte die Identifikation des katalytischen Zentrums. EPNP modifiziertes Toxin B verliert die intrinsische Proteaseaktivität und Zytotoxizität, aber wenn es direkt in das Zytosol der Wirtszelle injiziert ist, bleibt die Toxizität erhalten. Diese ist damit der erste Bericht eines bakteriellen Toxins, das eukaryotische Signale zur induzierten Autoproteolyse nutzt, um seine katalytisch-toxische Domäne in das Zytosol der Zielzelle freizusetzen. Durch diese Ergebnisse kann das Modell der Toxin-Prozessierung nun um einen weiteren entscheidenden Schritt vervollständigt werden.
Resumo:
An increased incidence of Clostridium difficile infection (CDI) is associated with the emergence of epidemic strains characterised by high genetic diversity. Among the factors that may have a role in CDI there is a family of 29 paralogs, the cell wall proteins (CWPs), which compose the outer layer of the bacterial cell and are likely to be involved in colonisation. Previous studies have shown that 12 of the29 cwp genes are clustered in the same region, named after slpA (cwp1) the slpA locus, whereas the remaining 17 paralogs are distributed throughout the genome. The variability of 14 of these 17 cwp paralogs was determined in 40 C. difficile clinical isolates belonging to six of the currently prevailing PCR ribotypes. Based on sequence conservation, these cwp genes were divided into two groups, one comprising cwp loci having highly conserved sequences in all isolates, and the other 5 loci showing low genetic conservation between isolates of the same PCR ribotype as well as between different PCR ribotypes. Three conserved CWPs, Cwp16, Cwp18 and Cwp25, and two variable ones, Cwp26 and Cwp27, were characterised further by Western blot analysis of total cell extracts or S-layer preparations of the C. difficile clinical isolates. Expression of genetically invariable CWPs is well conserved in all isolates, while genetically variable CWPs are not always expressed at comparable levels even in strains containing identical sequences but belonging to different PCR ribotypes. In addition, we chose to analyse the immune response obtained in a protection experiment, carried out in hamsters, using a protein microarray approach to study the in vivo expression and the immunoreactivity of several surface proteins, including 18 Cwps.
Resumo:
Clostridium difficile is an obligate anaerobic, Gram-positive, endospore-forming bacterium. Although an opportunistic pathogen, it is one of the important causes of healthcare-associated infections. While toxins TcdA and TcdB are the main virulence factors of C. difficile, the factors or processes involved in gut colonization during infection remain unclear. The biofilm-forming ability of bacterial pathogens has been associated with increased antibiotic resistance and chronic recurrent infections. Little is known about biofilm formation by anaerobic gut species. Biofilm formation by C. difficile could play a role in virulence and persistence of C. difficile, as seen for other intestinal pathogens. We demonstrate that C. difficile clinical strains, 630, and the strain isolated in the outbreak, R20291, form structured biofilms in vitro. Biofilm matrix is made of proteins, DNA and polysaccharide. Strain R20291 accumulates substantially more biofilm. Employing isogenic mutants, we show that virulence-associated proteins, Cwp84, flagella and a putative quorum sensing regulator, LuxS, Spo0A, are required for maximal biofilm formation by C. difficile. Moreover we demonstrate that bacteria in C. difficile biofilms are more resistant to high concentrations of vancomycin, a drug commonly used for treatment of CDI, and that inhibitory and sub-inhibitory concentrations of the same antibiotic induce biofilm formation. Surprisingly, clinical C. difficile strains from the same out-break, but from different origin, show differences in biofilm formation. Genome sequence analysis of these strains showed presence of a single nucleoide polymorphism (SNP) in the anti-σ factor RsbW, which regulates the stress-induced alternative sigma factor B (σB). We further demonstrate that RsbW, a negative regulator of alternative sigma factor B, has a role in biofilm formation and sporulation of C. difficile. Our data suggest that biofilm formation by C. difficile is a complex multifactorial process and may be a crucial mechanism for clostridial persistence in the host.
Resumo:
The contribution of Clostridium difficile toxin A and B (TcdA and TcdB) to cellular intoxication has been extensively studied, but their impact on bacterial colonization remains unclear. By setting-up two- and three-dimensional in vitro models of polarized gut epithelium, we investigated how C. difficile infection is affected by host cell polarity and whether TcdA and TcdB contribute to such events. Indeed, we observed that C. difficile adhesion and penetration of the epithelial barrier is substantially enhanced in poorly polarized or EGTA-treated cells, indicating that bacteria bind preferentially to the basolateral cell surface. In this context, we demonstrated that sub-lethal concentrations of C. difficile TcdA are able to alter cell polarity by causing redistribution of plasma membrane components between distinct surface domains. Taken together, the data suggest that toxin-mediated modulation of host cell organization may account for the capacity of this opportunistic pathogen to gain access to basolateral receptors leading to a successful colonization of the colonic mucosa.
Resumo:
The lethal toxin of Clostridium sordellii (TcsL) evokes severe, mostly fatal disease patterns like toxic shock syndrome in humans and animals. Since this large clostridial toxin-induced severe muscle damaging when injected intramuscularly into mice, we hypothesized that TcsL is also associated with equine atypical myopathy (EAM), a fatal myodystrophy of hitherto unknown etiology. Transmission electron microscopy revealed skeletal and heart muscles of EAM-affected horses to undergo degeneration ultrastructurally similar to the damage found in TcsL-treated mice. Performing immunohistochemistry, myofibers of EAM-affected horses specifically reacted with sera derived from horses with EAM as well as an antibody specific for the N-terminal part of TcsL, while both antibodies failed to bind to the myofibers of either healthy horses or those with other myopathies. The presence of TcsL in myofibers of horses with EAM suggests that it plays a role as trigger or even as lethal factor in this disease.