952 resultados para Cleaner Production
Resumo:
In recent years the environment and its effects on human life has been the subject of research. The scientific society organized to manage the problem of large amount of waste generated, discuss the degradation of the environment and point out possible solutions. The scarcity of references in the specific hemotherapy motivated this research. This study is an observational descriptive in order to raise the issue of hospital waste specific area of hemotherapy, presenting its latest ratings on Brazilian law also highlights the proposed Waste Management Program Health Service (PGRSS) Blood Center of Botucatu (HB) highlighting the importance of segregation of noble material in the generation of other therapeutic products using the technique of cleaner production (CP). The observational analysis of the reports shows a 20-fold increase in the amount of waste generated from 1993 to 2005, while the increase of manpower was 2.5 times. The increase in generation was due RSS hemocenter deployment of automated techniques, increased demand and improved sorting of waste. The technique implanted P + L in 2001 began using units of fresh frozen plasma, previously discarded after 12 months of storage, for the composition of new therapeutics for topical use, called bio dressing. In 10 years of implementation of this new technique, therapeutic products generated 535 patients benefited from micro-Botucatu.
Resumo:
Current studies indicate a need to integrate environmental management with manufacturing strategy, including topics like cross-functional integration, environmental impact, and waste reduction. Nevertheless, such studies are relatively rare, existing still a need for research in specific regional contexts. At the same time, the results found are not unanimous. Due to these gaps, the objective of this article is to analyze if environmental management can be considered a new competitive priority for manufacturing enterprises located in Brazil. A cross-sectional survey was conducted with Brazilian companies certified by ISO 14001. Sixty-five valid questionnaires were analyzed through Structural Equation Modelling (SEM). The first conclusion is that environmental management presents a preventive approach in the sample analyzed, focused on eco-efficiency, what potentially do not to create a competitive advantage. This preventive approach inhibits environmental management from being regarded as a new competitive manufacturing priority, in the full sense as defined by the literature. Another important result is that environmental management, although following a preventive focus, may influence positively the four manufacturing priorities: cost, quality, flexibility and delivery. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This study reports the results of a water footprint (WF) assessment of five types of textiles commonly used for the production of jeans, including two different fibres (cotton and Lyocell fibre) and five corresponding production methods for spinning, dyeing and weaving. The results show that the fibre production is the stage with the highest water consumption, being cotton production particularly relevant. Therefore, the study pays particular attention to the water footprint of cotton production and analyses the effects of external factors influencing the water footprint of a product, in this case, the incentives provided by the EU Common Agricultural Policy (CAP), and the relevance of agricultural practices to the water footprint of a product is emphasised. An extensification of the crop production led to higher WF per unit, but a lower overall pressure on the basins water resources. This study performs a sustainability assessment of the estimated cotton WFs with the water scarcity index, as proposed by Hoekstra et al. (2011), and shows their variations in different years as a result of different water consumption by crops in the rest of the river basin. In our case, we applied the assessment to the Guadalquivir, Guadalete and Barbate river basins, three semi-arid rivers in South Spain. Because they are found to be relevant, the available water stored in dams and the outflow are also incorporated as reference points for the sustainability assessment. The study concludes that, in the case of Spanish cotton production, the situation of the basin and the policy impact are more relevant for the status of the basin s water resources than the actual WF of cotton production. Therefore, strategies aimed at reducing the impact of the water footprint of a product need to analyse both the WF along the value chain and within the local context.
Resumo:
Artículo publicado en un número especial dedicado a la sostenibilidad. Se realiza un análisis crítico de las evaluación de la sostenibilidad en la rehabilitación y se plantea la perspectiva futura en este ámbito.
Resumo:
This multidisciplinary study concerns the optimal design of processes with a view to both maximizing profit and minimizing environmental impacts. This can be achieved by a combination of traditional chemical process design methods, measurements of environmental impacts and advanced mathematical optimization techniques. More to the point, this paper presents a hybrid simulation-multiobjective optimization approach that at once optimizes the production cost and minimizes the associated environmental impacts of isobutane alkylation. This approach has also made it possible to obtain the flowsheet configurations and process variables that are needed to manufacture isooctane in a way that satisfies the above-stated double aim. The problem is formulated as a Generalized Disjunctive Programming problem and solved using state-of-the-art logic-based algorithms. It is shown, starting from existing alternatives for the process, that it is possible to systematically generate a superstructure that includes alternatives not previously considered. The optimal solution, in the form a Pareto curve, includes different structural alternatives from which the most suitable design can be selected. To evaluate the environmental impact, Life Cycle Assessment based on two different indicators is employed: Ecoindicator 99 and Global Warming Potential.
Resumo:
The purpose of this paper is to identify the benefits of integrated management systems by comparing them with the benefits obtained through the individual implementation of ISO 9001 and ISO 14001 standards. The methodology used is a literature review based on an electronic search in the Web of Science, ScienceDirect, Scopus and Emerald databases. Findings show that although some benefits are common regardless the system management type, the benefits obtained with integration are greater than considering management systems separately because of the wider scope considered in integration. This is one of the first papers, to the best of our knowledge, to compare benefits from the two management systems standards when implemented separately and when integrated. In addition, some ideas are proposed for consideration in future research on the internalization of management systems and selection effect.
Resumo:
Concern for the environment has lately heightened awareness about the need for recycling in the construction industry. However, some standards, such as the Spanish standard, only accept the recycling of aggregates derived from concrete, which limits the extensive use of construction and demolition waste, which are produced in much bigger volumes. The aim of this work was to explore the possibility of using recycled mixed aggregates (RMA) in the preparation of precast non-structural concretes. To that end different percentages of natural aggregate were replaced by RMA in non-structural elements (25, 50, 75 and 100%). Contents of cement, water, and the dosages commonly used by companies were unchanged by the introduction of RMA. The characterization of the prepared elements has been done using the specific tests for each type of non-structural element (terrazzo for indoor use, hollow tiles, kerbstones and paving blocks): compression and flexural strength, water absorption, dimensional tolerances, abrasion and slipping resistance. The paving blocks, kerbstones, and hollow tiles prepared were tested for 360 days. The stability of the tested properties confirmed the possibility of using these wastes on an industrial scale satisfying the standard requirements. However, the surface of terrazzo with RMA is not as good as that prepared with natural aggregate.
Resumo:
In this work we assess the pathways for environmental improvement by the coal utilization industry for power generation in Australia. In terms of resources, our findings show that coal is a long term resource of concern as coal reserves are likely to last for the next 500 years or more. However, our analysis indicates that evaporation losses of water in power generation will approach 1000 Gl (gigalitres) per year, equivalent to a consumption of half of the Australian residential population. As Australia is the second driest continent on earth, water consumption by power generators is a resource of immediate concern with regards to sustainability. We also show that coal will continue to play a major role in energy generation in Australia and, hence, there is a need to employ new technologies that can minimize environmental impacts. The major technologies to reduce impacts to air, water and soils are addressed. Of major interest, there is a major potential for developing sequestration processes in Australia, in particular by enhanced coal bed methane (ECBM) recovery at the Bowen Basin, South Sydney Basin and Gunnedah Basin. Having said that, CO2 capture technologies require further development to support any sequestration processes in order to comply with the Kyoto Protocol. Current power generation cycles are thermodynamic limited, with 35-40% efficiencies. To move to a high efficiency cycle, it is required to change technologies of which integrated gasification combined cycle plus fuel cell is the most promising, with efficiencies expected to reach 60-65%. However, risks of moving towards an unproven technology means that power generators are likely to continue to use pulverized fuel technologies, aiming at incremental efficiency improvements (business as usual). As a big picture pathway, power generators are likely to play an increasing role in regional development; in particular EcoParks and reclaiming saline water for treatment as pressures to access fresh water supplies will significantly increase.
Resumo:
The aim of this research paper is to explore and evaluate previous work focussing on the relationship and links between Lean and Green supply chain management practices. Several explanatory frameworks are explored and discussed. It is intended that evidence and insights can be developed and used: (a) to assist our understanding of where Lean practices are synergistic for Green; (b) to clarify if Green practices are synergistic for Lean; and (c) to identify opportunities for companies to use their Lean framework as a catalyst to making their processes Green. The paper provides evidence suggesting that Lean is beneficial for Green practices and the implementation of Green practices in turn also has a positive influence on existing Lean business practices. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
Three novel solar thermal collector concepts derived from the Linear Fresnel Reflector (LFR) are developed and evaluated through a multi-criteria decision-making methodology, comprising the following techniques: Quality Function Deployment (QFD), the Analytical Hierarchy Process (AHP) and the Pugh selection matrix. Criteria are specified by technical and customer requirements gathered from Gujarat, India. The concepts are compared to a standard LFR for reference, and as a result, a novel 'Elevation Linear Fresnel Reflector' (ELFR) concept using elevating mirrors is selected. A detailed version of this concept is proposed and compared against two standard LFR configurations, one using constant and the other using variable horizontal mirror spacing. Annual performance is analysed for a typical meteorological year. Financial assessment is made through the construction of a prototype. The novel LFR has an annual optical efficiency of 49% and increases exergy by 13-23%. Operational hours above a target temperature of 300 C are increased by 9-24%. A 17% reduction in land usage is also achievable. However, the ELFR suffers from additional complexity and a 16-28% increase in capital cost. It is concluded that this novel design is particularly promising for industrial applications and locations with restricted land availability or high land costs. The decision analysis methodology adopted is considered to have a wider potential for applications in the fields of renewable energy and sustainable design. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Organisations have been approaching servitisation in an unstructured fashion. This is partially because there is insufficient understanding of the different types of Product-Service offerings. Therefore, a more detailed understanding of Product-Service types might advance the collective knowledge and assist organisations that are considering a servitisation strategy. Current models discuss specific aspects on the basis of few (or sometimes single) dimensions. In this paper, we develop a comprehensive model for classifying traditional and green Product-Service offerings, thus combining business and green offerings in a single model. We describe the model building process and its practical application in a case study. The model reveals the various traditional and green options available to companies and identifies how to compete between services; it allows servitisation positions to be identified such that a company may track its journey over time. Finally it fosters the introduction of innovative Product-Service Systems as promising business models to address environmental and social challenges. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
A new method for debromination of organics by a reductive medium like polypropylene is investigated. The reaction is carried out in inert atmosphere to avoid rapid oxidation of the polymer. Through this detoxification procedure, hydrogen bromide and small brominated alkanes are formed. Experiments in closed ampoules are carried out with tetrabromobisphenol A, dibromophenol, pentabromodiphenyl ether, dichlorophenol and an oil formed by pyrolysis of printed circuit boards in the Haloclean® process. The reaction is examined under isothermal conditions in a temperature range between 300 and 400°C and a residence time between 10 and 30 min. Optimal conditions were found at 350°C and at a residence time of 20 min. As chlorinated phenols are not destroyed under these conditions, the process may be a valuable procedure to gain hydrogen bromide out of mixtures of halogenated feed materials. Also, under atmospheric pressure, a reaction between polypropylene and brominated compounds takes place as could be proved by thermogravimetric analysis. Bromobenzene has an accelerating effect on the rate of weight loss of the polymer, but at higher concentrations, it can also be slowed down. © 2003 Elsevier Ltd. All rights reserved.
Resumo:
Interest in bioenergy as a viable alternative to fossil fuels is increasing. This emergent sector is subject to a range of ambitious initiatives promoted by National Governments to generate energy from renewable sources. Transition to energy production from biomass still lacks a feasible infrastructure particularly from a supply chain and business perspective. Supply chain integration has not been studied widely providing a deficit in the literature and in practice. This paper presents results from a pilot study designed to identify attributes that helps optimise such supply chains. To consider this challenge it is important to identify those characteristics that integrate bioenergy supply chains and ascertain if they are distinct from those found in conventional energy models. In general terms the supply chain is defined by upstream at the point of origin of raw materials and downstream at the point of distribution to final customer. It remains to be seen if this is the case for bioenergy supply chains as there is an imbalance between knowledge and practice, even understanding the terminology. The initial pilot study results presented in the paper facilitates understanding the gap between general supply chain knowledge and what is practiced within bioenergy organisations. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
As the world’s natural resources dwindle and critical levels of environmental pollution are approached, sustainability becomes a key issue for governments, organisations and individuals. With the consequences of such an issue in mind, this paper introduces a unifying approach to measure the sustainability performance of socio-economic systems based on the interplay between two key variables: essentiality of consumption and environmental impact. This measure attributes to every system a ‘fitness’ value i.e. a quantity that reflects its ability to remain resilient/healthy by avoiding ecological, social and economic collapse as it consumes the available resources. This new measure is tested on a system where there is a limited supply of resources and four basic consumption types. The analysis has theoretical implications as well as practical importance as it can help countries, organisations or even individuals, in finding better ways to measure sustainability performance.