847 resultados para Classification of Banach spaces
Resumo:
Hereditary nonpolyposis colorectal cancer (HNPCC) is the most common known clearly hereditary cause of colorectal and endometrial cancer (CRC and EC). Dominantly inherited mutations in one of the known mismatch repair (MMR) genes predispose to HNPCC. Defective MMR leads to an accumulation of mutations especially in repeat tracts, presenting microsatellite instability. HNPCC is clinically a very heterogeneous disease. The age at onset varies and the target tissue may vary. In addition, families that fulfill the diagnostic criteria for HNPCC but fail to show any predisposing mutation in MMR genes exist. Our aim was to evaluate the genetic background of familial CRC and EC. We performed comprehensive molecular and DNA copy number analyses of CRCs fulfilling the diagnostic criteria for HNPCC. We studied the role of five pathways (MMR, Wnt, p53, CIN, PI3K/AKT) and divided the tumors into two groups, one with MMR gene germline mutations and the other without. We observed that MMR proficient familial CRC consist of two molecularly distinct groups that differ from MMR deficient tumors. Group A shows paucity of common molecular and chromosomal alterations characteristic of colorectal carcinogenesis. Group B shows molecular features similar to classical microsatellite stable tumors with gross chromosomal alterations. Our finding of a unique tumor profile in group A suggests the involvement of novel predisposing genes and pathways in colorectal cancer cohorts not linked to MMR gene defects. We investigated the genetic background of familial ECs. Among 22 families with clustering of EC, two (9%) were due to MMR gene germline mutations. The remaining familial site-specific ECs are largely comparable with HNPCC associated ECs, the main difference between these groups being MMR proficiency vs. deficiency. We studied the role of PI3K/AKT pathway in familial ECs as well and observed that PIK3CA amplifications are characteristic of familial site-specific EC without MMR gene germline mutations. Most of the high-level amplifications occurred in tumors with stable microsatellites, suggesting that these tumors are more likely associated with chromosomal rather than microsatellite instability and MMR defect. The existence of site-specific endometrial carcinoma as a separate entity remains equivocal until predisposing genes are identified. It is possible that no single highly penetrant gene for this proposed syndrome exists, it may, for example be due to a combination of multiple low penetrance genes. Despite advances in deciphering the molecular genetic background of HNPCC, it is poorly understood why certain organs are more susceptible than others to cancer development. We found that important determinants of the HNPCC tumor spectrum are, in addition to different predisposing germline mutations, organ specific target genes and different instability profiles, loss of heterozygosity at MLH1 locus, and MLH1 promoter methylation. This study provided more precise molecular classification of families with CRC and EC. Our observations on familial CRC and EC are likely to have broader significance that extends to sporadic CRC and EC as well.
Resumo:
Laboratory confirmation methods are important in bovine cysticerosis diagnosis as other pathologies can result in morphologically similar lesions resulting in false identifications. We developed a probe-based real-time PCR assay to identify Taenia saginata in suspect cysts encountered at meat inspection and compared its use with the traditional method of identification, histology, as well as a published nested PCR. The assay simultaneously detects T. saginata DNA and a bovine internal control using the cytochrome c oxidase subunit 1 gene of each species and shows specificity against parasites causing lesions morphologically similar to those of T. saginata. The assay was sufficiently sensitive to detect 1 fg (Ct 35.09 +/- 0.95) of target DNA using serially-diluted plasmid DNA in reactions spiked with bovine DNA as well as in all viable and caseated positive control cysts. A loss in PCR sensitivity was observed with increasing cyst degeneration as seen in other molecular methods. In comparison to histology, the assay offered greater sensitivity and accuracy with 10/19 (53%) T. saginata positives detected by real-time PCR and none by histology. When the results were compared with the reference PCR, the assay was less sensitive but offered advantages of faster turnaround times and reduced contamination risk. Estimates of the assay's repeatability and reproducibility showed the assay is highly reliable with reliability coefficients greater than 0.94. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.
Resumo:
Let Wm,p denote the Sobolev space of functions on Image n whose distributional derivatives of order up to m lie in Lp(Image n) for 1 less-than-or-equals, slant p less-than-or-equals, slant ∞. When 1 < p < ∞, it is known that the multipliers on Wm,p are the same as those on Lp. This result is true for p = 1 only if n = 1. For, we prove that the integrable distributions of order less-than-or-equals, slant1 whose first order derivatives are also integrable of order less-than-or-equals, slant1, belong to the class of multipliers on Wm,1 and there are such distributions which are not bounded measures. These distributions are also multipliers on Lp, for 1 < p < ∞. Moreover, they form exactly the multiplier space of a certain Segal algebra. We have also proved that the multipliers on Wm,l are necessarily integrable distributions of order less-than-or-equals, slant1 or less-than-or-equals, slant2 accordingly as m is odd or even. We have obtained the multipliers from L1(Image n) into Wm,p, 1 less-than-or-equals, slant p less-than-or-equals, slant ∞, and the multiplier space of Wm,1 is realised as a dual space of certain continuous functions on Image n which vanish at infinity.
Resumo:
Protein Kinase-Like Non-kinases (PKLNKs), which are closely related to protein kinases, lack the crucial catalytic aspartate in the catalytic loop, and hence cannot function as protein kinase, have been analysed. Using various sensitive sequence analysis methods, we have recognized 82 PKLNKs from four higher eukaryotic organisms, namely, Homo sapiens, Mus musculus, Rattus norvegicus, and Drosophila melanogaster. On the basis of their domain combination and function, PKLNKs have been classified mainly into four categories: (1) Ligand binding PKLNKs, (2) PKLNKs with extracellular protein-protein interaction domain, (3) PKLNKs involved in dimerization, and (4) PKLNKs with cytoplasmic protein-protein interaction module. While members of the first two classes of PKLNKs have transmembrane domain tethered to the PKLNK domain, members of the other two classes of PKLNKs are cytoplasmic in nature. The current classification scheme hopes to provide a convenient framework to classify the PKLNKs from other eukaryotes which would be helpful in deciphering their roles in cellular processes.
Resumo:
Learning automata are adaptive decision making devices that are found useful in a variety of machine learning and pattern recognition applications. Although most learning automata methods deal with the case of finitely many actions for the automaton, there are also models of continuous-action-set learning automata (CALA). A team of such CALA can be useful in stochastic optimization problems where one has access only to noise-corrupted values of the objective function. In this paper, we present a novel formulation for noise-tolerant learning of linear classifiers using a CALA team. We consider the general case of nonuniform noise, where the probability that the class label of an example is wrong may be a function of the feature vector of the example. The objective is to learn the underlying separating hyperplane given only such noisy examples. We present an algorithm employing a team of CALA and prove, under some conditions on the class conditional densities, that the algorithm achieves noise-tolerant learning as long as the probability of wrong label for any example is less than 0.5. We also present some empirical results to illustrate the effectiveness of the algorithm.
Resumo:
Context: Pheochromocytomas and paragangliomas (PPGLs) are heritable neoplasms that can be classified into gene-expression subtypes corresponding to their underlying specific genetic drivers. Objective: This study aimed to develop a diagnostic and research tool (Pheo-type) capable of classifying PPGL tumors into gene-expression subtypes that could be used to guide and interpret genetic testing, determine surveillance programs, and aid in elucidation of PPGL biology. Design: A compendium of published microarray data representing 205 PPGL tumors was used for the selection of subtype-specific genes that were then translated to the Nanostring gene-expression platform. A support vector machine was trained on the microarray dataset and then tested on an independent Nanostring dataset representing 38 familial and sporadic cases of PPGL of known genotype (RET, NF1, TMEM127, MAX, HRAS, VHL, and SDHx). Different classifier models involving between three and six subtypes were compared for their discrimination potential. Results: A gene set of 46 genes and six endogenous controls was selected representing six known PPGL subtypes; RTK1–3 (RET, NF1, TMEM127, and HRAS), MAX-like, VHL, and SDHx. Of 38 test cases, 34 (90%) were correctly predicted to six subtypes based on the known genotype to gene-expression subtype association. Removal of the RTK2 subtype from training, characterized by an admixture of tumor and normal adrenal cortex, improved the classification accuracy (35/38). Consolidation of RTK and pseudohypoxic PPGL subtypes to four- and then three-class architectures improved the classification accuracy for clinical application. Conclusions: The Pheo-type gene-expression assay is a reliable method for predicting PPGL genotype using routine diagnostic tumor samples.
Resumo:
The present study deals with the application of cluster analysis, Fuzzy Cluster Analysis (FCA) and Kohonen Artificial Neural Networks (KANN) methods for classification of 159 meteorological stations in India into meteorologically homogeneous groups. Eight parameters, namely latitude, longitude, elevation, average temperature, humidity, wind speed, sunshine hours and solar radiation, are considered as the classification criteria for grouping. The optimal number of groups is determined as 14 based on the Davies-Bouldin index approach. It is observed that the FCA approach performed better than the other two methodologies for the present study.
Resumo:
Evaluation of intermolecular interactions in terms of both experimental and theoretical charge density analyses has produced a unified picture with which to classify strong and weak hydrogen bonds, along with van der Waals interactions, into three regions.
Resumo:
Background:Overwhelming majority of the Serine/Threonine protein kinases identified by gleaning archaeal and eubacterial genomes could not be classified into any of the well known Hanks and Hunter subfamilies of protein kinases. This is owing to the development of Hanks and Hunter classification scheme based on eukaryotic protein kinases which are highly divergent from their prokaryotic homologues. A large dataset of prokaryotic Serine/Threonine protein kinases recognized from genomes of prokaryotes have been used to develop a classification framework for prokaryotic Ser/Thr protein kinases. Methodology/Principal Findings: We have used traditional sequence alignment and phylogenetic approaches and clustered the prokaryotic kinases which represent 72 subfamilies with at least 4 members in each. Such a clustering enables classification of prokaryotic Ser/Thr kinases and it can be used as a framework to classify newly identified prokaryotic Ser/Thr kinases. After series of searches in a comprehensive sequence database we recognized that 38 subfamilies of prokaryotic protein kinases are associated to a specific taxonomic level. For example 4, 6 and 3 subfamilies have been identified that are currently specific to phylum proteobacteria, cyanobacteria and actinobacteria respectively. Similarly subfamilies which are specific to an order, sub-order, class, family and genus have also been identified. In addition to these, we also identify organism-diverse subfamilies. Members of these clusters are from organisms of different taxonomic levels, such as archaea, bacteria, eukaryotes and viruses.Conclusion/Significance: Interestingly, occurrence of several taxonomic level specific subfamilies of prokaryotic kinases contrasts with classification of eukaryotic protein kinases in which most of the popular subfamilies of eukaryotic protein kinases occur diversely in several eukaryotes. Many prokaryotic Ser/Thr kinases exhibit a wide variety of modular organization which indicates a degree of complexity and protein-protein interactions in the signaling pathways in these microbes.
Resumo:
In this paper. we propose a novel method using wavelets as input to neural network self-organizing maps and support vector machine for classification of magnetic resonance (MR) images of the human brain. The proposed method classifies MR brain images as either normal or abnormal. We have tested the proposed approach using a dataset of 52 MR brain images. Good classification percentage of more than 94% was achieved using the neural network self-organizing maps (SOM) and 98% front support vector machine. We observed that the classification rate is high for a Support vector machine classifier compared to self-organizing map-based approach.
Resumo:
Background: Protein phosphorylation is a generic way to regulate signal transduction pathways in all kingdoms of life. In many organisms, it is achieved by the large family of Ser/Thr/Tyr protein kinases which are traditionally classified into groups and subfamilies on the basis of the amino acid sequence of their catalytic domains. Many protein kinases are multidomain in nature but the diversity of the accessory domains and their organization are usually not taken into account while classifying kinases into groups or subfamilies. Methodology: Here, we present an approach which considers amino acid sequences of complete gene products, in order to suggest refinements in sets of pre-classified sequences. The strategy is based on alignment-free similarity scores and iterative Area Under the Curve (AUC) computation. Similarity scores are computed by detecting common patterns between two sequences and scoring them using a substitution matrix, with a consistent normalization scheme. This allows us to handle full-length sequences, and implicitly takes into account domain diversity and domain shuffling. We quantitatively validate our approach on a subset of 212 human protein kinases. We then employ it on the complete repertoire of human protein kinases and suggest few qualitative refinements in the subfamily assignment stored in the KinG database, which is based on catalytic domains only. Based on our new measure, we delineate 37 cases of potential hybrid kinases: sequences for which classical classification based entirely on catalytic domains is inconsistent with the full-length similarity scores computed here, which implicitly consider multi-domain nature and regions outside the catalytic kinase domain. We also provide some examples of hybrid kinases of the protozoan parasite Entamoeba histolytica. Conclusions: The implicit consideration of multi-domain architectures is a valuable inclusion to complement other classification schemes. The proposed algorithm may also be employed to classify other families of enzymes with multidomain architecture.
Resumo:
Traumatic brain injury (TBI) affects people of all ages and is a cause of long-term disability. In recent years, the epidemiological patterns of TBI have been changing. TBI is a heterogeneous disorder with different forms of presentation and highly individual outcome regarding functioning and health-related quality of life (HRQoL). The meaning of disability differs from person to person based on the individual s personality, value system, past experience, and the purpose he or she sees in life. Understanding of all these viewpoints is needed in comprehensive rehabilitation. This study examines the epidemiology of TBI in Finland as well as functioning and HRQoL after TBI, and compares the subjective and objective assessments of outcome. The frame of reference is the International Classification of Functioning, Disability and Health (ICF). The subjects of Study I represent the population of Finnish TBI patients who experienced their first TBI between 1991 and 2005. The 55 Finnish subjects of Studies II and IV participated in the first wave of the international Quality of life after brain injury (QOLIBRI) validation study. The 795 subjects from six language areas of Study III formed the second wave of the QOLIBRI validation study. The average annual incidence of Finnish hospitalised TBI patients during the years 1991-2005 was 101:100 000 in patients who had TBI as the primary diagnosis and did not have a previous TBI in their medical history. Males (59.2%) were at considerably higher risk of getting a TBI than females. The most common external cause of the injury was falls in all age groups. The number of TBI patients ≥ 70 years of age increased by 59.4% while the number of inhabitants older than 70 years increased by 30.3% in the population of Finland during the same time period. The functioning of a sample of 55 persons with TBI was assessed by extracting information from the patients medical documents using the ICF checklist. The most common problems were found in the ICF components of Body Functions (b) and Activities and Participation (d). HRQoL was assessed with the QOLIBRI which showed the highest level of satisfaction on the Emotions, Physical Problems and Daily Life and Autonomy scales. The highest scores were obtained by the youngest participants and participants living independently without the help of other people, and by people who were working. The relationship between the functional outcome and HRQoL was not straightforward. The procedure of linking the QOLIBRI and the GOSE to the ICF showed that these two outcome measures cover the relevant domains of TBI patients functioning. The QOLIBRI provides the patients subjective view, while the GOSE summarises the objective elements of functioning. Our study indicates that there are certain domains of functioning that are not traditionally sufficiently documented but are important for the HRQoL of persons with TBI. This was the finding especially in the domains of interpersonal relationships, social and leisure activities, self, and the environment. Rehabilitation aims to optimize functioning and to minimize the experience of disability among people with health conditions, and it needs to be based on a comprehensive understanding of human functioning. As an integrative model, the ICF may serve as a frame of reference in achieving such an understanding.